(η^{5}-Pentamethylcyclopentadienyl)rhodium(III) complexes bearing $\eta^{1}-\mathrm{P}$ and η^{2}-phosphino-phenoxide coordinations derived from (2,6-dimethoxyphenyl)diphenylphosphine: their preparation and reactions with Lewis bases

Xiao-Hong Han, Yasuhiro Yamamoto *
Department of Chemistry, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan

Received 24 December 1997; received in revised form 25 February 1998

Abstract

Reaction of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ with (2,6-dimethoxyphenyl)diphenylphosphine (MDMPP) gave $\mathrm{Cp}^{*} \mathrm{RhCl}_{2}$ (MDMPP- P) 2 and $\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P, O) 5$, depending on the reaction conditions. Treatment of $\mathbf{2}$ with NaPF_{6} formed the O-coordination complex, $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-\mathrm{P}, \mathrm{OMe})]\left(\mathrm{PF}_{6}\right) 3$. Complex 3 was reconverted to $\mathbf{2}$ by treatment with $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Et}_{3}\right] \mathrm{Cl}$. Reactions of 3 with isocyanide, carbon monoxide or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ eliminated the O -coordination to give the corresponding complexes $\left[\mathrm{Cp}^{*} \mathrm{RhCl}(\mathrm{MDMPP}-P)(\mathrm{L})\right]\left(\mathrm{PF}_{6}\right) 4\left(\mathrm{~L}=\mathrm{CO}(\mathbf{a}), 2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}(\mathbf{b}), p-\mathrm{TosCH}_{2} \mathrm{NC}(\mathbf{c})\right.$, and $\left.\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}\right)$ (d). Complex 5 reacted with Lewis bases (L) in the presence of NaPF_{6} to produce $[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MDMPP}-P, O)(\mathrm{L})]\left(\mathrm{PF}_{6}\right) \mathbf{6}$ and could be also obtained from 3 and MDMPP. The CO ligand of $\mathbf{4 a}$ or $\mathbf{6 a}$ was labile and was replaced with isocyanide or phosphine to produce the corresponding complexes, whereas its reverse reaction did not occur. Conversion of $\mathbf{4 d}$ to $\mathbf{6 d}$ was also observed, but conversion from $\mathbf{4}$ to $\mathbf{6}$ did not occur in other complexes. X-ray analyses of 2, 4a, $\mathbf{5}$ and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ were performed and showed that the complexes have the piano-stool structure; 2: triclinic, P1 (no. 2), $a=10.639$ (3), $b=15.965(3)$, $\mathrm{c}=8.800(3) \AA, \alpha=94.43(2)$, $\beta=103.75(3), \gamma=88.62(2)^{\circ}, V=1447.4(7) \AA^{3}, Z=2, R=0.039, R_{\mathrm{w}}=0.042 ; 4 \mathrm{c}\left(\mathrm{L}=p-\mathrm{TosCH}_{2} \mathrm{NC}\right)$: orthorhombic, Pna 2_{1} (no. 33), $a=26.817(4), b=17.662(5), c=8.673(4) \AA, V=4108(1) \AA^{3}, Z=4, R=0.040, R_{\mathrm{w}}=0.042$; 5: orthorhombic, $P b c a$ (no. 61), $a=8.212(8), b=17.808(10), c=35.96(1) \AA, V=5259(4) \AA^{3}, Z=8, R=0.040, R_{\mathrm{w}}=0.042 ; 6 \mathrm{a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~L}=\mathrm{CO})$: monoclinic, $C 2 / c$ (no. 15), $a=33.29(2), b=8.567(5), c=29.26(3) \AA, \beta=124.51(3)^{\circ}, V=6877(7) \AA^{\circ}, Z=8, R=0.040, R_{\mathrm{w}}=0.042$. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: (2,6-Dimethoxyphenyl)diphenylphosphine; Bis[dichloro(pentamethylcyclopentadienyl) rhodium(II); Crystal structures; $\mathrm{P}-\mathrm{O}$ chelating ligand

1. Introduction

The introduction of ether-phosphine species, instead of classical phosphines, plays an important role as an anchor to prepare intramolecular solvent complexes which are much more stable than simple solvent molecules [1]. A weak metal-oxygen bond provides as a condition of valuable precursors in catalytically-operating process. Aromatic phosphines containing the

[^0]alkoxy groups at the 2- and 6-positions are one of the categories in the ether-phosphine species. Tris(2,4,6trimethoxyphenyl)phosphine (TMPP) has produced the complexes containing a variety of coordination modes such as $\left(\eta^{1}-P\right),\left(\eta^{2}-P, O \mathrm{Me}\right),\left(\eta^{2}-P, O\right)$, and $\left(\eta^{3}-\right.$ $P, O, O \mathrm{Me}$) [2], because of its high basicity and large cone angle [3]. Tris(2,6-dimethoxyphenyl)phosphine (TDMPP) and its related phosphines such as bis(2,6dimethoxyphenyl)phenylphosphine (BDMPP) and (2,6dimethoxyphenyl)diphenylphosphine (MDMPP) also showed interesting chemical behavior. Recently we have
carried out the systematic reactions of $\operatorname{bis}\left[\operatorname{dichloro}\left(\eta^{6}-\right.\right.$ arene)ruthenium(II)] with these phosphines (TDMPP, BDMPP, and MDMPP) [4]. We reported that the reaction with TDMPP gave the complexes (η^{6} arene $) \mathrm{Ru}\left[\mathrm{P}\left(2-\mathrm{O}-6-\mathrm{MeOC}_{6} \mathrm{H}_{3}\right)_{2}\left(2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]$ having new type of trihapto- (P, O, O) coordination and that the reaction with BDMPP or MDMPP formed the dihapto- $(P, O) \quad$ complex, $\quad\left(\eta^{6}\right.$-arene $) \mathrm{RuCl}[\mathrm{P}(2-\mathrm{O}-6$ $\left.\left.\mathrm{MeOC}_{6} \mathrm{H}_{3}\right)\left(2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Ph}\right]$ and the monohapto$(P) \quad$ one, $\quad\left(\eta^{6}\right.$-arene $) \mathrm{RuCl}_{2}\left[\mathrm{PPh}_{2}\left(2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]$, respectively. Complexes prepared in these reactions have been obtained as a result of the direct formation.
Our research was extended to $\operatorname{bis}\left[\right.$ dichloro $\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)rhodium(III)] $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} \mathbf{1}$, which has an isoelectronic structure. In the reactions of 1 with MDMPP, we could isolate the $\left(\eta^{1}-P\right)$, $\left(\eta^{2}-\right.$ $P, O \mathrm{Me}$) and ($\eta^{2}-P, O$) coordinated complexes of ($\eta^{5}-$ pentamethylcyclopentadienyl)rhodium(III). We found that the stepwise conversion from the $\left(\eta^{1}-P\right)$ to the phosphino-phenoxido complexes occurred and these complexes showed versatile reactivities to Lewis bases. Here we wish to report the preparations and reactions of monohapto- $\left(\eta^{1}-P\right)$ and dihapto- $(P, O \mathrm{Me})$ and (P, O) chelated complexes derived from a MDMPP ligand.

2. Experimental

All reactions were carried out under nitrogen atmosphere. Complex 1 [5], MDMPP [3], $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ [6], and xylyl isocyanide [7] were prepared according to the literature. $p-\mathrm{TosCH}_{2} \mathrm{NC}\left(p-\mathrm{Tos}=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right)$ and $(p \text {-tolyl })_{3} \mathrm{P}\left(p\right.$-tolyl $\left.=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ were available commercially. Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and other solvents were distilled over CaH_{2}. The IR and electronic absorption spectra were measured on FT/IR-5300 and U-best 30 spectrometers, respectively. NMR spectroscopy was carried out on a Bruker AC250. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured at 250 MHz using tetramethylsilane as an internal reference and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were measured at 100 MHz using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external reference.

2.1. Reaction of $\mathbf{1}$ with MDMPP

To a solution of $\mathbf{1}(82.8 \mathrm{mg}, 0.134 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{ml})$ was added MDMPP $(108.2 \mathrm{mg}, 0.334 \mathrm{mmol})$ at room temperature (r.t.). After the mixture was stirred for 2 h , the solvent was removed to ca. 3 ml under reduced pressure and hexane was added to the solution to give dark red crystals of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}(\right.$ MDMPP- P) $] \mathbf{2}$ ($150.4 \mathrm{mg}, 89 \%$). IR (nujol): $1575 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max } 404(\log \varepsilon 3.94), 278(\log \varepsilon 4.46) \mathrm{nm}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.15\left(\mathrm{~d}, J_{\mathrm{PH}}=3.5 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right)$, 3.28 (s, OMe), 6.4-7.7 (m, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 23.6\left(\mathrm{~d}, J_{\mathrm{RhP}}=150.9 \mathrm{~Hz}\right) \mathrm{ppm}$. Anal. Calc.
for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{PRh}: \mathrm{C}, 57.07 ; \mathrm{H}, 5.43$. Found: C, 56.65 ; H, 5.12%.

2.2. Reaction of $\mathbf{2}$ with NaPF_{6}

To a solution of $\mathbf{2}(125 \mathrm{mg}, 0.198 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml}) /$ acetone $(5 \mathrm{ml})$ was added $\mathrm{NaPF}_{6}(60 \mathrm{mg}, 0.357$ mmol) at r.t. After 4 h , the solvent was removed and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to ca. 3 ml and hexane was added to give red crystals of $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P, O \mathrm{Me})]\left(\mathrm{PF}_{6}\right) 3$ (132 $\mathrm{mg}, 86 \%$). IR (nujol): 1585, 1537, $835\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \quad \lambda_{\max } 365, \quad 285 \mathrm{~nm} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.50\left(\mathrm{~d}, J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 3.88(\mathrm{~s}$, OMe), 6.7-7.7 (m, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 37.8\left(\mathrm{~d}, J_{\mathrm{RhP}}=146.5 \mathrm{~Hz}\right),-143.9\left(\mathrm{sep}, J_{\mathrm{PF}}=708.8\right.$ $\mathrm{Hz}) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{ClF}_{6} \mathrm{P}_{2} \mathrm{Rh}$: C, 48.63; H, 4.63. Found: C, 48.62; H, 4.32\%.
This complex was also prepared from the stoichiometric reaction of $\mathbf{1}$ with MDMPP in the presence of NaPF_{6}.

2.3. Reaction of $\mathbf{3}$ with $\left[\left(\mathrm{PhCH}_{2}\right) E t_{3} \mathrm{~N}\right] \mathrm{Cl}$

A solution of $3(16 \mathrm{mg}, 0.022 \mathrm{mmol})$ and benzyltriethylammonium chloride ($4.6 \mathrm{mg}, 0.025 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was stirred at r.t. for 3 h . The precipitate was filtered off and the solvent was removed to ca. 3 ml from the filtrate and ether was added to give 2 $(6.42 \mathrm{mg}, 78 \%)$.

2.4. Reaction of $\mathbf{3}$ with CO

Carbon monoxide was bubbled for 3 min through a solution of 3 ($61.5 \mathrm{mg}, 0.083 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ at r.t. After the mixture had been stirred for 2 h , the solvent was removed under reduced pressure, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to give orange crystals ($44.3 \mathrm{mg}, 86 \%$) of $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P)(\mathrm{CO})]\left(\mathrm{PF}_{6}\right) \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 4 \mathrm{a} \cdot$ $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. IR (nujol): $2071(\mathrm{C} \equiv \mathrm{O}), 1583,835\left(\mathrm{PF}_{6}\right)$ cm^{-1}. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} 366,286 \mathrm{~nm} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.50\left(\mathrm{~d}, J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 3.88(\mathrm{~s}$, OMe $), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 6.7-7.7(\mathrm{~m}, \mathrm{Ph}) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.2\left(\mathrm{~d}, J_{\mathrm{RhP}}=121.8 \mathrm{~Hz}\right),-144.0$ (sep, $J_{\mathrm{PF}}=708.8 \mathrm{~Hz}$) ppm. Anal. Calc. for $\mathrm{C}_{31.5} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{ClF}_{6} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 48.76$; $\mathrm{H}, 4.55$. Found: C , 48.85; H, 4.39\%.

2.5. Reaction of $\mathbf{3}$ with xylyl isocyanide

Xylyl isocyanide ($18.2 \mathrm{mg}, 0.138 \mathrm{mmol}$) was added to a solution of $3(54.3 \mathrm{mg}, 0.086 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{ml})$ at r.t. After the mixture had been stirred for 2 h , the solvent was removed to ca. 3 ml in vacuo and diethyl ether was added to give orange crystals (75.4
$\mathrm{mg}, 98 \%)$ of $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P)(\mathrm{XylNC})]\left(\mathrm{PF}_{6}\right) \mathbf{4 b}$. $\mathrm{UV}-\mathrm{vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max } 340 \mathrm{~nm}$. IR (nujol): 2168 $(\mathrm{N} \equiv \mathrm{C}), 1581,839\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $1.69\left(\mathrm{~d}, J_{\mathrm{PH}}=3.75 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 2.11(\mathrm{~s}, o-\mathrm{Me}), 3.37(\mathrm{~s}$, OMe), 6.7-7.8 (c, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $21.7\left(\mathrm{~d}, J_{\mathrm{RhP}}=130.5 \mathrm{~Hz}\right),-144.0\left(\mathrm{sep}, J_{\mathrm{PF}}=708.8 \mathrm{~Hz}\right)$ ppm. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{NF}_{6} \mathrm{ClP}_{2} \mathrm{Rh}$: C, 53.71; H, 4.94; N, 1.61. Found: C, 53.72; H, 4.95; N, 1.64\%.

Complex $4 \mathrm{c}(20.5 \mathrm{mg}, 65 \%)$ was prepared from the reaction of $\mathbf{3}(25.3 \mathrm{mg}, 0.034 \mathrm{mmol})$ with $p-\mathrm{TosCH}_{2} \mathrm{NC}$ $(9.4 \mathrm{mg}, 0.045 \mathrm{mmol})$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} 337 \mathrm{~nm}$. IR (nujol): $2214(\mathrm{NaC}), 1581,850\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}): $\delta 1.63\left(\mathrm{~d}, J_{\mathrm{PH}}=3.75 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), 2.51 ($\mathrm{s}, p-\mathrm{Me}$), 3.33 (s, OMe), 4.68 (a center value of a AB type, $J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, v_{\mathrm{AB}}=4.7 \mathrm{~Hz}$), 6.6-8.1 (c, Ph) $\mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.0\left(\mathrm{~d}, J_{\mathrm{RhP}}=126.9\right.$ $\mathrm{Hz}),-144.0\left(\mathrm{sep}, J_{\mathrm{PF}}=708.8 \mathrm{~Hz}\right) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{NSClF}_{6} \mathrm{P}_{2} \mathrm{Rh}: \mathrm{C}, 50.04 ; \mathrm{H}, 4.63$; N, 1.49. Found: C, 49.98; H, 4.58; N, 1.37\%.

Complex $4 \mathrm{~d} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}(24.9 \mathrm{mg}, 73 \%)$ was prepared from the reaction of $3(28 \mathrm{mg}, 0.038 \mathrm{mmol})$ with $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}(10.7 \mathrm{mg}, \quad 0.079 \mathrm{mmol})$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} 339,233 \mathrm{~nm}$. IR (nujol): $2110(\mathrm{~N}=\mathrm{C})$, 1583, $837\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.75(\mathrm{~s}$, CMe), 1.55 (dd, $J_{\mathrm{PH}}=3.5 \mathrm{~Hz}, J_{\mathrm{PH}}=6.0 \mathrm{~Hz} \mathrm{C}_{5} M e_{5}$), 3.34 ($\mathrm{s}, o-\mathrm{Me}), 4.15\left(\mathrm{c}, \mathrm{OCH}_{2}\right), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 6.6-$ 7.6 (m, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.02(\mathrm{dd}$, $\left.J_{\mathrm{RhP}}=135.7 \mathrm{~Hz}, J_{\mathrm{PP}}=89.0 \mathrm{~Hz}\right), 114.0\left(\mathrm{dd}, J_{\mathrm{RhP}}=\right.$ $\left.223.5 \mathrm{~Hz}, J_{\mathrm{PP}}=89.0 \mathrm{~Hz}\right) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{34.75} \mathrm{H}_{44.5} \mathrm{O}_{5} \mathrm{Cl}_{2.5} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Rh}: \mathrm{C}, 44.37 ; \mathrm{H}, 4.77$. Found: C,44.76;H, 4.55%.

2.6. Reaction of $\mathbf{3}$ with MDMPP

A solution of $\mathbf{3}(10.8 \mathrm{mg}, 0.015 \mathrm{mmol})$ and MDMPP ($7.1 \mathrm{mg}, 0.021 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was stirred at r.t. After 2 h , the solvent was removed to dryness and the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to yield reddish orange crystals of $\mathrm{Cp} * \mathrm{RhCl}($ MDMPP$P, O) 5$ ($7.1 \mathrm{mg}, 84 \%$). IR (nujol): $1585,1537 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} 331,400($ sh $) \mathrm{nm} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.48\left(\mathrm{~d}, J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 3.34(\mathrm{~s}$, OMe), 5.8-7.9 (m, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 50.4\left(\mathrm{~d}, J_{\mathrm{RhP}}=139.6 \mathrm{~Hz}\right) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{2}$ ClPRh: C, 59.95; H, 5.38. Found: C 59.65; H, 5.15%.
Complex 3 ($26.2 \mathrm{mg}, 0.041 \mathrm{mmol}$) in EtOH (10 ml) was heated for 3 h in a sealed tube, and the solvent was removed to dryness and the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to yield $\mathbf{5}(11 \mathrm{mg}, 42 \%)$.

2.7. Heating of $4 \boldsymbol{a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

A solution of $\mathbf{4 a}(30 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ ml) was refluxed for 2 h . The work-up of the mixture and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether gave 3 ($24.5 \mathrm{mg}, 81 \%$).

2.8. Reactions of $\mathbf{4 a}$ with xylyl isocyanide or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{4 a}$ and xylyl isocyanide or $\mathrm{P}\left(\mathrm{OCH}_{2}\right) 3 \mathrm{CMe}$ was stirred for 2 h at r.t. The work-up of the mixture gave the corresponding $\mathbf{4 b}$ or $\mathbf{4 d}$.

2.9. Reaction of $\mathbf{5}$ with CO

Carbon monoxide was bubbled through a mixture of $5(171.7 \mathrm{mg}, 0.237 \mathrm{mmol})$ and excess NaPF_{6} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ and acetone $(5 \mathrm{ml})$ for 3 min at r.t. and the mixture was kept stirring for 2 h . The solvent was removed in vacuo, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to ca. 3 ml and diethyl ether was added to yield red crystals of $[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MDMPP}-P, O)(\mathrm{CO})]\left(\mathrm{PF}_{6}\right) \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathbf{6 a} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}(131.2 \mathrm{mg}, 78 \%)$. $\lambda_{\text {max }} 366$, 286. IR (nujol): 2089 (C=O), 1583, 1545, $839\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}): $\delta 1.68\left(\mathrm{~d}, J_{\mathrm{PH}}=4.0 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 3.39$ (s, MeO), 6.7-7.9 (m, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 46.8\left(\mathrm{~d}, J_{\mathrm{RhP}}=111.9 \mathrm{~Hz}\right),-140.0\left(\operatorname{sep} P \mathrm{~F}_{6}\right.$, $J_{\mathrm{PF}}=708.8 \mathrm{~Hz}$ ppm. Anal. Calc. for $\mathrm{C}_{30.75} \mathrm{H}_{32.5} \mathrm{O}_{3} \mathrm{Cl}_{1.5} \mathrm{~F}_{6} \mathrm{P}_{2} \mathrm{Rh}: \mathrm{C}, 47.22 ; \mathrm{H}, 4.15$. Found: C, 47.83; H, 3.91%.

2.10. Reaction of $\mathbf{5}$ with $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$

A sample of $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}(11 \mathrm{mg}, 0.081 \mathrm{mmol})$ was added to a solution of $5(25 \mathrm{mg}, 0.046 \mathrm{mmol})$ and an excess of NaPF_{6} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and acetone (5 ml) at r.t. After 2 h , the solvent was removed to dryness and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to ca. 3 ml and diethyl ether was added to yield orange crystals of [Cp*Rh(MDMPP-
 vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }} 309 \mathrm{~nm}$. IR (nujol): 1583, 1548, 839 $\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.60(\mathrm{~s}, \mathrm{CMe}), 1.53$ $\left(\mathrm{dd}, J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, J_{\mathrm{PH}}=5.0 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 3.32(\mathrm{~s}$, $\mathrm{Me} \mathrm{O}), 3.82\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.0-7.6(\mathrm{~m}, \mathrm{Ph}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 47.4\left(\mathrm{dd}, J_{\mathrm{RhP}}=121.5 \mathrm{~Hz}, J_{\mathrm{PP}}=85.0 \mathrm{~Hz}\right.$, MDMPP- P), 115.4 [dd, $J_{\mathrm{RhP}}=230.7 \mathrm{~Hz}, J_{\mathrm{PP}}=85.0$ $\left.\mathrm{Hz},(p \text {-tol })_{3} \mathrm{P}\right],-143.8\left(\operatorname{sep~PF} 6, J_{\mathrm{PF}}=708.8 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Rh}$: C, 47.96; H, 4.88. Found: C, 47.70 ; H, 4.62%.

According to analogous procedures orange crystals of $\mathbf{6 e}(37 \mathrm{mg}, 86 \%)$ were prepared from $5(25 \mathrm{mg}, 0.046$ $\mathrm{mol})$ and tris $(p$-tolyl)phosphine ($13.9 \mathrm{mg}, 0.046 \mathrm{mmol}$) in the presence of excess NaPF_{6}. IR (nujol): 1583, 1548, $839\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max } 333 \mathrm{~nm} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}): $\delta 1.19\left(\mathrm{t}, J_{\mathrm{PH}}=J_{\mathrm{P}^{\prime} \mathrm{H}}=3.3 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right)$, 2.40 (bs, p-Me), 3.11 (s, OMe), 5.8-7.6 (c, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 22.9\left(\mathrm{dd}, J_{\mathrm{RhP}}=142.1 \mathrm{~Hz}\right.$, $J_{\mathrm{PP}}=41.0 \mathrm{~Hz}$, MDMPP- P), $51.1\left[\mathrm{dd}, J_{\mathrm{RhP}}=133.7 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{PP}}=41.0 \mathrm{~Hz},(p \text {-tolyl })_{3} \mathrm{P}\right],-143.8\left(\mathrm{sep} \mathrm{PF}_{6}, J_{\mathrm{PF}}=\right.$ $708.8 \mathrm{~Hz}) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Rh}: \mathrm{C}$, 60.37 ; H, 5.27. Found: C, 60.09 ; H, 5.00%.

Table 1
Crystal data for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}(\mathrm{MDMPP}-P) \mathbf{2},\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}(\mathrm{MDMPP}-P)\left(p-\mathrm{TosCH}_{2} \mathrm{NC}\right)\right]\left(\mathrm{PF}_{6}\right) \mathbf{4 c},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}(\mathrm{MDMPP}-P, O) \mathbf{5}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}($ MDMPP- $\left.P, O)(\mathrm{CO})\right]\left(\mathrm{PF}_{6}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$.

Compound	2	4c	5	6a. $\mathrm{C}_{6} \mathrm{H}_{6}$
Formula	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{PCl}_{2} \mathrm{Rh}$	$\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{ClSP}_{2} \mathrm{~F}_{6} \mathrm{Rh}$	$\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{PClRh}$	$\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{Rh}$
$M_{\text {w }}$	631.38	936.13	580.90	896.53
Color	Brown	Orange	Orange	Orange
Crystal dimensions (mm)	$0.50 \times 0.25 \times 0.20$	$0.50 \times 0.30 \times 0.20$	$0.2 \times 0.1 \times 0.4$	$0.05 \times 0.05 \times 0.20$
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	$P 1$ (no. 2)	Pna 1_{1} (no. 33)	Pbca (no. 61)	C2/c (no. 15)
Lattice parameters				
a	10.639(3)	26.817(4)	8.212(8)	33.29(2)
b	15.965(3)	17.662(5)	17.808(10)	8.567(5)
c	8.800(3)	8.673(4)	35.96(1)	29.26(3)
α	94.43(2)	90.0	90.0	90.0
β	103.75(3)	90.0	90.0	124.51(3)
γ	88.62(2)	90.0	90.0	90.0
$V\left(\AA^{3}\right)$	1447.4(7)	4108(1)	5259(4)	6877(7)
Z	2	4	8	8
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.449	1.513	1.467	1.538
$F(000)$	648	1912	2384	3243
$\mu\left(\mathrm{cm}^{-1}\right)$	8.53	6.76	8.34	6.56
Scan rate (${ }^{\text {min }}{ }^{-1}$)	16	8	4	2
No. of reflections ($\theta<50^{\circ}$)	7013	4109	7245	5143
No. of unique data	4424 [$I>3.0 \sigma(I)]$	$2061[I>2.0 \sigma(I)]$	2673 ($I>3.0 \sigma(I)$]	$1531(I>2.0 \sigma(I)]$
No. of variables	325	466	307	368
$R, R_{\mathrm{w}}^{\mathrm{a}}$	0.039, 0.042	0.052, 0.052	0.047, 0.048	0.072, 0.073
GOF $^{\text {b }}$	1.25	1.24	1.22	1.30

${ }^{\text {a }} R=\Sigma \|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right||\Sigma| F_{\mathrm{o}} \mid$ and $R_{\mathrm{w}}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w \mid F_{\mathrm{o}}{ }^{2}\right]^{1 / 2}\left[w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)\right]$.
${ }^{\mathrm{b}} \mathrm{GOF}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{obs}}-N_{\mathrm{parm}}\right)\right]^{1 / 2}$.

Complex 6b ($42.6 \mathrm{mg}, 55 \%$) was obtained from 5 ($54.3 \mathrm{mg}, 0.093 \mathrm{~mol}$) and xylyl isocyanide (18.4 mg , 0.139 mmol) in the presence of excess NaPF_{6}. IR (nujol): $2183(\mathrm{~N} \equiv \mathrm{C}), 1583,1545,839\left(\mathrm{PF}_{6}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}): $\delta 1.68\left(\mathrm{~d}, J_{\mathrm{PH}}=3.3 \mathrm{~Hz}, \mathrm{C}_{5} M e_{5}\right), 1.84$ ($\mathrm{s}, o-\mathrm{Me}$), $3.35(\mathrm{~s}, \mathrm{OMe}$), 6.0-7.6 (c, Ph) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 47.8\left(\mathrm{~d}, J_{\mathrm{RhP}}=116.0 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{NF}_{6} \mathrm{P}_{2} \mathrm{Rh}$: C, 55.55; H, 4.91; N, 1.70. Found: C, 55.65 ; H, 4.97; N, 1.64\%. This complex $\mathbf{6 b}$ was also obtained from the reaction of $\mathbf{6 a}$ with xylyl isocyanide at r.t.

2.11. Heating of $4 \boldsymbol{d}$ in EtOH

A solution of $4 \mathrm{~d}(9.5 \mathrm{mg}, 0.011 \mathrm{mmol})$ in EtOH (10 ml) was refluxed for 4 h . The solvent was removed and the residue was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether to give $\mathbf{6 d}(6.8 \mathrm{mg}, 75 \%)$.

2.12. Data collection

Complexes 2, 4c and 5 were recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane or $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether. Complex 6a was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene and contained a benzene molecule as a solvated molecule. Cell constants were determined from 25 reflections on Rigaku four-circle automated diffractometer AFC5S. The crystal
parameters along with data collections are summarized in Table 1. Data collection was carried out by a Rigaku AFC5S refractometer at $25^{\circ} \mathrm{C}$. Intensities were measured by the $2 \theta-\omega$ scan method using Mo- K_{α} radiation $(\lambda=0.71069 \AA)$. Throughout the data collection the intensities of the three standard reflections were measured every 200 reflections as a check of the stability of the crystals and any decay was not observed. Intensities were corrected for Lorentz and polarization effects. The absorption correction was made. Atomic scattering factors were taken from Cromer and Waber [8]. Anomalous dispersion effects were included in $F_{\text {calc. }}$ [9]; the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ were from Creagh and McAuley [10]. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation (1985 and 1992).

2.13. Determination of the structures

The structures of $\mathbf{2}$ and $\mathbf{5}$ were solved by direct methods (SIR92) and $\mathbf{4 c}$ and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ were solved by Patterson methods (DIRDIF92 PATTY). The rhodium atom was located in the initial E map, and subsequent Fourier syntheses gave the positions of other non-H atoms. Hydrogen atoms were calculated at the ideal positions with the $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$, and were not refined. The positions of the non-H atoms of $\mathbf{2 , 4 c}$

3

vii

Scheme 1. Reactions of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}(\mathrm{MDMPP}-P) 2\right.$ and its related complexes. (i) NaPF_{6}. (ii) $\left[\mathrm{N}\left(\mathrm{PhCH}_{2}\right) \mathrm{Et}_{3}\right] \mathrm{Cl}$. (iii) $\mathrm{L}=\mathbf{4 a}: \mathrm{CO}, \mathbf{4 b}$: XylNC, 4c: $p-\mathrm{TosCH}_{2} \mathrm{NC}, 4 \mathrm{~d}: \mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$. (iv) $\mathrm{L}=\mathrm{CO}$, refluxed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (v) Refluxed in in EtOH. (vi) MDMPP, r.t. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (vii) $\mathrm{L}=\mathbf{6 a}: \mathrm{CO}, \mathbf{6} \mathbf{b}: \mathrm{XylNC}, \mathbf{6 d}: \mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}, \mathbf{6 e}: \mathrm{P}(p \text {-Tolyl })_{3}$. (viii) 4d, refluxed in EtOH .
and $\mathbf{5}$ were refined with anisotropic thermal parameters by using full-matrix least-squares methods. The F atoms for $\mathbf{4 c}$ and the $\mathrm{C} 1, \mathrm{C} 6$, and F atoms and a solvated benzene atoms (C31-C36) for $\mathbf{6 c} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ were refined isotropically and other non- H atoms were refined anisotropically by using full-matrix least-squares methods. Final difference Fourier syntheses showed peaks at heights up to $0.41-0.61 \mathrm{e}^{\AA^{-3}}$.

Fig. 1. Crystal structure of $\left[C p^{*} \mathrm{RhCl}_{2}(\operatorname{MDMPP}-P)\right] 2$.

C39
Fig. 2. Crystal structure of $\left[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P)\left(p-\mathrm{TosCH}_{2}-\right.\right.$ $\mathrm{NC})]\left(\mathrm{PF}_{6}\right) 4 \mathrm{c} . \mathrm{PF}_{6}$ is omitted for clarity.

3. Results and discussion

Overall reactions described here are depicted in Scheme 1. Treatment of $\mathbf{1}$ with MDMPP at r.t. gave dark red crystals 2 in a 89% yield, formulated as $\mathrm{Cp} * \mathrm{RhCl}_{2}\left[\mathrm{PPh}_{2}\left\{2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum the methyl protons showed a doublet at δ $1.15 \mathrm{ppm}\left(J_{\mathrm{PH}}=3.5 \mathrm{~Hz}\right)$ which was derived from a coupling with a P atom because the methyl protons on the Cp * ring of the starting complex $\mathbf{1}$ appeared as a singlet. The methoxy protons appeared at $\delta 3.28 \mathrm{ppm}$ as a singlet. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum showed a doublet at $\delta 23.5 \mathrm{ppm}\left(J_{\mathrm{RhP}}=150.9 \mathrm{~Hz}\right)$. The IR spectrum showed only one band ($1575 \mathrm{~cm}^{-1}$) in the range from 1500 to $1600 \mathrm{~cm}^{-1}$, suggesting the presence of the $\eta^{1}-\mathrm{P}$ coordination [4]. It was confirmed by an X-ray analysis that the structure consists of a pianostool in which the rhodium atom is surrounded by a phosphorus, two chloride atoms and Cp* ring (Fig. 1). The salient feature of this complex is that the in-

Fig. 3. Crystal structure of $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P, O)] 5$.
tramolecular $\mathrm{Cl} 1 \cdots \mathrm{O} 1$ distance is $3.247 \AA$ and the close interaction between the methoxy group and Cl atom is expected.

When complex 2 was treated with NaPF_{6} in an acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at r.t., an elimination of a Cl atom occurred readily to form the salt-like O-coordinated complex 3, $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-P, O \mathrm{Me})]\left[\mathrm{PF}_{6}\right]$. The IR spectrum showed two bands at 1585 and 1537 cm^{-1} in the range from 1500 to $1600 \mathrm{~cm}^{-1}$, indicative of the presence of the $\mathrm{P}-\mathrm{O}$ chelation [4]. The PF_{6} group was found by a strong band at $835 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$-NMR spectrum the methoxy protons appeared at δ 3.88 ppm as a broad singlet at ambient temperature, indicating a rapid exchange between free and coordinated MeO groups. The temperature-dependent NMR spectra were measured. Two sharp singlets were observed at $\delta 3.34$ and 4.43 ppm below ca. $-20^{\circ} \mathrm{C}$, assignable to free and coordinated methoxy groups, respectively. Two singlets became broader with the rise of temperature and the chemical shift difference became narrower. The two broad signals coalesced at ca. $10^{\circ} \mathrm{C}$, showing a rapid exchange between two methyl groups. A coalesced signal became sharper with further rise of temperature and a sharp singlet appeared at δ 3.86 ppm at $50^{\circ} \mathrm{C}$. The activation energy for this intramolecular process could be evaluated using the Eyring equation as ca. $35 \mathrm{~kJ} \mathrm{~mol}^{-1}$. For $\mathrm{RhCl}_{2}\left(P_{-}\right.$ $O)(P-O)_{2}[11], \mathrm{RhCl}(P-O)(P-O)$ [12] and $\mathrm{RhCl}_{3}(P-$ $O)(P-O)[13]\left[P-O=\mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}\right.\right.$ or $\left.\mathrm{Ph}), \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OEt}\right]$ the values were $50-75 \mathrm{~kJ}$ mol^{-1}, thus indicating a weaker bonding for 3 .

This weak interaction was revealed by the fact that addition of excess $\mathrm{NEt}_{3}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ to 3 regenerated 2. This labile O-coordination also led to the easy replacement with Lewis bases such as CO, $\mathrm{XylNC}(\mathrm{Xyl}=2,6-$ $\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right), p-\mathrm{TosCH}_{2} \mathrm{NC}$ or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$. When CO was bubbled into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3}$ at r.t., compound $\mathbf{4 a}$, formulated as $[\mathrm{Cp} * \mathrm{RhCl}(\mathrm{MDMPP}-$ $P)(\mathrm{CO})]\left[\mathrm{PF}_{6}\right]$, was formed by an elimination of an O-coordinated methoxy group and the subsequent coordination of an incoming CO molecule. The similar complexes $\mathbf{4}$ (b: $\mathrm{L}=\mathrm{XylNC} ; \mathbf{c}=p-\mathrm{TosCH}_{2} \mathrm{NC} ; \mathbf{d}: \mathrm{L}=$ $\left.\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}\right)$ were isolated from 3 and the corresponding Lewis bases. However the reaction with tris(p-tolyl)phosphine recovered the starting material, due to steric hindrance from the greater cone angle $\left(145^{\circ}\right)$ of p-tolyl groups than that $\left(101^{\circ}\right)$ of $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ [14].

The absence of the $\mathrm{P}-\mathrm{O}$ chelation was confirmed by observation of only one band in the range $1500-1600$ cm^{-1} in the IR spectrum of each complex. The characteristic bands of these complexes ($\mathbf{4 a}-\mathbf{c}$) appeared at $2071 \mathrm{~cm}^{-1}$ for $\mathbf{4 a}, 2168 \mathrm{~cm}^{-1}$ for $\mathbf{4 b}$ and $2214 \mathrm{~cm}^{-1}$ for $4 \mathbf{c}$; the former is assigned to a CO group and the others to an NC group.

Fig. 4. Crystal structure of $[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MDMPP}-P, O)(\mathrm{CO})]\left(\mathrm{PF}_{6}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ $6 \mathrm{a} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{PF}_{6}$ is omitted for clarity.

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{4 c}$ the methylene protons showed an AB quartet centered at $\delta 4.68 \mathrm{ppm}$ arising from chemical inequivalence caused by the presence of the chiral center. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum showed a doublet at $\delta 22.0\left(J_{\mathrm{RhP}}=126.9 \mathrm{~Hz}\right) \mathrm{ppm}$ for the phosphine ligand. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{4 d}$, the Cp * protons appeared as a double doublet, with separations of 3.5 and 6.0 Hz , the larger separation being associated with the entering $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ ligand. The methoxy and methylene protons appeared at $\delta 3.34$ and 4.15 ppm as a singlet and complex band, respectively. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum two double doublets appeared at $\delta 19.0\left(J_{\mathrm{RhP}}=135.8 \mathrm{~Hz}, J_{\mathrm{PP}}=\right.$ $89.0 \mathrm{~Hz})$ and $114.0\left(J_{\mathrm{RhP}}=223.5 \mathrm{~Hz}, J_{\mathrm{PP}}=89.0 \mathrm{~Hz}\right)$ ppm ; the former is assignable to the MDMPP and the latter to $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$. The X-ray analysis of $\mathbf{4 c}$ was carried out as the representative compound in order to determine the detailed structures of $\mathbf{4}$, and the structure is a typical piano-stool one (Fig. 2). Reactions with small molecules also have been reported in $\left.\mathrm{Cp} * \mathrm{Ru}(\mathrm{P}-\mathrm{O})\left(\mathrm{P}^{\wedge} \mathrm{O}\right)\right]\left[\mathrm{BPh}_{4}\right] \quad$ complex $\quad\left(\mathrm{P}-\mathrm{O}=\eta^{1}\right.$ $\mathrm{Ph}_{2} P^{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}, \mathrm{P}^{\wedge} \mathrm{O}=\eta^{2}-\mathrm{Ph}_{2} P \mathrm{CH}_{2} \mathrm{CH}_{2} O \mathrm{Me}$) [15].

The CO ligand was very labile. When 4 a was refluxed in $\mathrm{Ch}_{2} \mathrm{Cl}_{2}$, the CO ligand was eliminated to regenerate 3, whereas heating of $\mathbf{4 b}$ in EtOH recovered the starting material quantitatively, suggesting the stability of a metal-isocyanide bond.
$3 \underset{\text { - } \mathrm{CO} / \text { heat }}{\mathrm{CO}} \mathbf{4}$
The coordinated CO ligand could be replaced readily with other Lewis bases. When $4 \mathbf{4}$ was treated with isocyanides or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t., the corresponding complex $\mathbf{4 b}, \mathbf{4 c}$, or $\mathbf{4 d}$ was obtained, whereas its reverse reaction and an interconversion between $\mathbf{4 b}$ and $\mathbf{4 d}$ did not proceed. The difference in the ligand substitution reactions is due to the fact that

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 2

Bond lengths (A)					
Rh-Cl1	2.392(1)	Rh-C12	2.411(1)	Rh-P	2.366(1)
O1-C12	1.357(5)	O1-C17	1.409(6)	O2-C16	1.347(6)
O2-C18	1.405(6)	Rh-Cp*(av)	2.190		
Cl1 \cdots O1	3.226(3)				
Bond angles (${ }^{\circ}$)					
C11-Rh-C12	89.00(4)	Cl1-Rh-P	93.05(4)	Cl2-Rh-P	90.02(4)

the rhodium atom in the high oxidation state prefers isocyanide or phosphine ligands with their strong σ donor ability to the CO ligand.

When 3 was treated with MDMPP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t., the phosphonium salt MDMPP $\cdot \mathrm{MeCl}$ and a neutral reddish-orange phenoxido complex $5 \eta^{5}$ $\mathrm{Cp} * \mathrm{RhCl}($ MDMPP- P, O) were formed. Complex 5 could be prepared also by refuxing 2 in EtOH or directly by refluxing a mixture of $\mathbf{1}$ and MDMPP in EtOH. A similar elimination reaction of MeX from a MDMPP ligand has been reported from the reaction of a square-planar $\mathrm{PtCl}_{2}(\mathrm{MDMPP})_{2}$ complex with NaI under reflux in 2-methoxyethanol [16]. The IR spectrum showed the presence of the characteristic P,O-chelation at 1585 and $1537 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed a doublet at $\delta 1.48\left(J_{\mathrm{PH}}=3.0 \mathrm{~Hz}\right)$ and a singlet at $\delta 3.34 \mathrm{ppm}$, assignable to methyl protons of the $\mathrm{Cp} *$ and methoxy groups, respectively. The X-ray analysis confirmed that the configuration around the Rh atom is not significantly different from that of $\left(\eta^{6}\right.$ arene) $\mathrm{RuCl}($ MDMPP- P, O) (Fig. 3) [4].

When a mixture of complex 5 in acetone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated under a CO atmosphere in the presence of NaPF_{6} at r.t., replacement of a Cl anion occurred readily to give reddish crystals 6 [$\mathrm{Cp} * \mathrm{Rh}$ (MDMPP$P, O)(\mathrm{CO})]\left(\mathrm{PF}_{6}\right)$. Analogously, the reaction with XylNC or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ in the presence of NaPF_{6} produced the corresponding orange salt-like complex 6 (b: L = $\left.\mathrm{XylNC} ; \mathbf{d}=\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}\right)$. Compound $\mathbf{6 d}$ was also prepared by heating of $\mathbf{4 d}$ in EtOH , whereas heating of 4b recovered the starting material.

Table 3
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{4 c}$

Although no reaction occurred between 3 and $\operatorname{tris}(p-$ tolyl)phosphine, the complex $6 \mathrm{e}\left[\mathrm{L}=(p \text {-tolyl })_{3} \mathrm{P}\right]$ could be obtained as orange crystals from the reaction of $\mathbf{5}$ with bulky $\operatorname{tris}(p$-tolyl)phosphine. The presence of the coordinated MeO group in 3 prevented the reaction with tert-phosphine, which suggests a considerable amount of steric hindrance encountered by an entering ligand.
The IR spectrum of 6a showed a characteristic band at $2089 \mathrm{~cm}^{-1}$ (due to a $\mathrm{C}=\mathrm{O}$) and that of $\mathbf{6 b}$, at 2183 cm^{-1}, due to a $\mathrm{C} \equiv \mathrm{N}$ bond, appearing at higher frequency by ca. $15 \mathrm{~cm}^{-1}$ than those of $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively, due to the higher electronegativity of the O atom than that of a Cl atom. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{6 d}$ showed two singlets at $\delta 0.60$ and 3.32 ppm assignable to the MeC and MeO protons and a broad signal at $\delta 3.82 \mathrm{ppm}$ due to the $\mathrm{CH}_{2} \mathrm{O}$ groups. The $\mathrm{Cp} *$ protons at $\delta 1.53 \mathrm{ppm}$ appeared as a double doublet appearing at 5.5 and 3.0 Hz , respectively; based on assignment of $\mathbf{4 d}$, the former coupling constant is responsible for the P atom of $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ and the latter for MDMPP- O ligand, respectively. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum consisted of a double doublet at $\delta 47.4$ $\mathrm{ppm}\left(J_{\mathrm{RhP}}=121.5, J_{\mathrm{PP}}=85.0 \mathrm{~Hz}\right)$ due to MDMPP- O ligand and $\delta 115.4\left(J_{\mathrm{RhP}}=230.7, J_{\mathrm{PP}}=85.0 \mathrm{~Hz}\right) \mathrm{ppm}$ due to $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ ligand. An analogous NMR behavior was also observed for $\mathbf{6 e}$. In the ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{6 e}$, the methyl protons of the Cp^{*} ligand appeared at $\delta 1.19 \mathrm{ppm}$ as a triplet, separated by $J_{\mathrm{PH}}=J_{\mathrm{P}^{\prime} \mathrm{H}}=3.3 \mathrm{~Hz}$. The protons of p-methyl and methoxy groups appeared at $\delta 2.40$ (bs) and 3.11 (s) ppm . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum consisted of a dou-

Bond lengths (A)					
Rh-Cl1	2.383(4)	Rh-P	2.353(3)	Rh-C31	1.95(1)
C31-N1	1.14(1)	S1-O3	1.45 (1)	S1-O4	1.44(1)
O1-C12	1.36(1)	O1-C17	1.43(2)	O2-C16	1.34(1)
O2-C18	1.46(2)	Rh-Cp*(av)	2.22		
Bond angles (${ }^{\circ}$)					
XCl1-Rh-P	91.9(1)	Cl1-Rh-C31	88.0(4)	P1-Rh-C31	90.1(3)
Rh-C31-N1	172.6(10)	C31-N1-C32	178(1)	N1-C32-S1	109.1(8)
O3-S1-C32	107.5(7)	O4-S1-C32	107.5(7)	O3-S1-O4	121.5(8)
C32-S1-C33	108.3(7)				

Table 4
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 5

Bond lengths (Å)					
Rh-Cl1	$2.404(3)$	Rh-P(1)	$2.302(2)$	Rh-O1	$2.059(5)$
O1-Cl1	$1.284(8)$	O2-C15	$1.393(9)$	O2-C17	$1.39(1)$
Rh-Cp*(av)	2.177				
Bond angles $\left(^{\circ}\right.$)					
Cl1-Rh-P	$86.56(8)$	Cl1-Rh-O1	$86.6(2)$	P-Rh-O1	$82.3(1)$
Rh-O1-Cl1	$121.6(5)$	O1-Cl1-C16	$116.4(7)$	P-Cl1-C16	$113.7(6)$

ble doublet at $\delta 22.9\left(J_{\mathrm{RhP}}=142.1, J_{\mathrm{PP}}=41.0 \mathrm{~Hz}\right)$ due to $\operatorname{tris}(p$-tolyl $)$ phosphine and $51.1\left(J_{\mathrm{RhP}}=133.7, J_{\mathrm{PP}}=\right.$ $41.0 \mathrm{~Hz}) \mathrm{ppm}$ due to the MDMPP- O ligand. The structure of this type of complexes was determined by an X-ray analysis of 6 (Fig. 4).

The CO ligand of $\mathbf{6 a}$ could be eliminated readily, as well as that of $\mathbf{4 a}$. When $\mathbf{6 a}$ was treated with xylyl isocyanide or $\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CMe}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t., the corresponding complex $\mathbf{6 b}$ or $\mathbf{6 d}$ was isolated in high yield, respectively, but the reverse reactions did not occur. An interconversion between $\mathbf{6 b}$ and $\mathbf{6 d}$ also did not proceed.

3.1. Molecular structures

The molecular structures of $\mathbf{2}, \mathbf{4 c}, \mathbf{5}$, and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ are depicted in Figs. 1-4. The selected bond lengths and angles are shown in Tables 2-5. All complexes have piano-stool structures. Average bond angles ($\mathrm{A}-\mathrm{Rh}-\mathrm{B}$) among three ligands except the Cp^{*} ring are $\mathrm{ca} .90^{\circ}$ for 2 and $\mathbf{4 c}$, but ca. 86° for 5 and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$. The bond angles of the complexes bearing the $\mathrm{P}-\mathrm{O}$ chelation are narrower than those of non-chelated complexes. Such difference was also observed in the $\mathrm{Rh}-\mathrm{P}$ bond lengths; non-chelated complexes 2 and $4 c$ are slightly longer than the chelated complexes 5 and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, minimizing the steric influence of tert-phosphine. The $\mathrm{Rh}-\mathrm{O}$ bond lengths in $\mathbf{5}$ and $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ are 2.059(5) and 2.08(1) \AA, respectively, being not different significantly.
The salient feature in $\mathbf{2}$ is an intramolecular interaction of $3.226(3) \AA$ between Cl 1 and O 1 atoms, being close to a sum ($3.20 \AA$) of the van der Waals' radii of the two atoms. This value suggested the presence of
some interaction between a Cl atom and a methyl group, which is likely a driving force of an elimination of MeCl . The Rh-C31 (isocyanide) length of 1.939 (10) \AA in $\mathbf{4 c}$ is not significantly different from the Rh-C30 (carbon monoxide) one of $1.96(2) \AA$. The $\mathrm{C} \equiv \mathrm{O}$ and $\mathrm{C} \equiv \mathrm{N}$ bond lengths fall in the range of the usual triple bond distances. The Rh-C31-N1 and C31-N1-C32 bond angles in 4 c are $172.6(10)$ and $177(1)^{\circ}$, respectively. These values are not unusual. The $\mathrm{Rh}-\mathrm{C} 30-\mathrm{O} 3$ angle in $6 a \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ is bent and measures $164(1)^{\circ}$.

4. Conclusion

Complexes 2, $\mathbf{3}$ and $\mathbf{5}$ showed versatile reactivities for Lewis bases such as CO, isocyanide and phosphines. Some of the complexes are interconvertible and the route from $\mathbf{2}$ to $\mathbf{6}$ proceeded stepwise. These complexes can act as starting materials for chemistry of the rhodium complexes bearing the $\mathrm{P}-\mathrm{O}$ coordination. The diversity of chemical reaction is expected for other small molecules, such as acetylenes and olefins and studies of these such molecules are currently in progress.

5. Supplementary material

Tables of positional coordinates, anisotropic parameters, bond lengths, and angles, and a listing of observed and calculated structure factors are available from Y. Yamamoto on request.

Table 5
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{6 a} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$

Bond length (A)				
Rh-P	$2.334(5)$	Rh-O1	$2.08(1)$	$1.38(2)$
O1-C12	$1.35(2)$	$\mathrm{O} 2-\mathrm{C} 16$	Rh-C30	O2-C17
O3-C30	$1.04(2)$	Rh-Cp*(av)	2.208	
Bond angle $\left(^{\circ}\right)$				
P1-Rh-O1	$82.1(4)$	P1-Rh-C30	$87.8(6)$	O1-Rh-C30
Rh-C30-O3	$164(1)$	Rh-P1-Cl1	$99.7(6)$	Rh-O1-C12

Acknowledgements

The authors would like to thank Professor Sigetoshi Takahashi and Fumie Takei in Osaka University for measurement of FAB mass spectroscopy.

References

[1] A. Bader, E. Lindner, Coord. Chem. Rev. 108 (1991) 27.
[2] (a) S.C. Haefner, K.R. Dunbar, C. Bender, J. Am. Chem. Soc. 13 (1991) 9540 and therein. (b) S.C. Haefner, K. Dunbar, Organometallics 11 (1992) 1431 and therein. (c) K.R. Dunbar, J.H. Matonic, V.P. Saharan, Inorg. Chem. 33 (1994) 25. (d) L.-J. Baker, G.A. Bowmaker, D. Camp, P.C. Healy, H. Schmidbaur, O. Steigelmann, A.H. White, J. Inorg. Chem. 31 (1992) 3656. (e) L.-J. Baker, G.A. Bowmaker, B.W. Skelton, A.H. White, J. Chem. Soc. Dalton Trans. (1993) 3235. (f) K.R. Dunbar, S.C. Haefner, C.E. Uzelmeier, A. Howard, Inorg. Chim. Acta 240 (1995) 527. (g) L.-J. Baker, R.C. Bott, G.A. Bowmaker, P.C. Healy, B.W. Skelton, P. Schwerdtfeger, A.H. White, J. Chem. Soc. Dalton Trans. (1995) 1341 and therein.
[3] (a) M. Wada, S. Higashizaki, A. Tsuboi, J. Chem. Soc. Synop. (1985) 38; J. Chem. Res. Miniprint 1985, 0467. (b) M. Wada, A. Tsuboi,J. Chem. Soc. Perkin Trans. 1 (1987) 151. (c) Y. Yamashoji, T. Matsushita, M. Wada, T. Shono, Chem. Lett. (1988) 43.
[4] (a) Y. Yamamoto, R. Sato, M. Ohshima, F. Matsuo, J. Organomet. Chem. 489 (1995) C68. (b) Y. Yamamoto, R. Sato, F. Matsuo, C. Sudoh, T. Igoshi, Inorg. Chem. 35 (1996) 2329.
[5] J.W. Kang, K. Moseley, M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5971.
[6] W.S. Wadsworth, W.D. Emmons, J. Am. Chem. Soc. 84 (1962) 610.
[7] H.M. Walborsky, G.E. Niznik, J. Org. Chem. 37 (1972) 187.
[8] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, vol. IV, Kynoch Press, Birmingham, UK, Table 2.2A, 1974.
[9] J.A. Ibers, W.C. Hamilton, Acta. Crystallogr. 17 (1964) 781.
[10] D.C. Creagh, W.J. McAuley, in: A.J.C. Wilson, (Ed.), International Tables for Crystallography, vol. C, Kluwer Academic, Boston, Table 4.2.6.8, 1992, pp. 219-222.
[11] (a) P. Braunstein, Y. Chauvin, J. Nahring, Y. Dusausoy, D. Bayeul, A. Tiripicchio, F. Ugozzoli, J. Chem. Soc. Dalton Trans. (1995) 851. (b) J.-B. Ballif, P. Braunstein, A.D. Burrows, R.D. Adams, W. Wu, J. Cluster Sci. 5 (1994) 443. (c) J. Andrieu, P. Braunstein, A.D. Burrows, J. Chem. Res. S (1993) 380. (d) P. Braunstein, D. Matt, Y. Dusausoy, Inorg. Chem. 22 (1983) 2043. (e) E. Lindner, B. Karle, Z. Natureforsch. Teil B 45 (1990) 1108.
[12] (a) P. Braunstein, D. Matt, Y. Dusausoy, Inorg. Chem. 22 (1983) 2043. (b) P Braunstein, Y. Chauvin, J. Nhring, A. DeCian, J. Fischer, J. Chem. Soc. Dalton Trans. (1995) 863.
[13] E. Lindner, Q. Wang, H.A. Mayer, A. Bader, H. Kühbauch, P. Wegner, Organometallics 12 (1993) 3291.
[14] C.A. Tolman, Chem. Rev. 77 (1977) 313.
[15] (a) E. Lindner, M. Haustein, H.A. Mayer, K. Gierling, R. Fawzi, M. Steimann, Organometallics 14 (1995) 2245. (b) E. Lindner, H.A. Mayer, R. Fawzi, M. Steimann, Organometallics 12 (1993) 1865.
[16] E. Lindner, M. Haustein, R. Fawzi, M. Steimann, P. Wegner, Organometallics 13 (1994) 5021.

[^0]: * Corresponding author. Fax: + 81 474751855.

