

Journal of Organometallic Chemistry 561 (1998) 157-165

(η^{5} -Pentamethylcyclopentadienyl)rhodium(III) complexes bearing η^{1} -P and η^{2} -phosphino-phenoxide coordinations derived from (2,6-dimethoxyphenyl)diphenylphosphine: their preparation and reactions with Lewis bases

Xiao-Hong Han, Yasuhiro Yamamoto *

Department of Chemistry, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274, Japan

Received 24 December 1997; received in revised form 25 February 1998

Abstract

Reaction of $[Cp*RhCl_2]_2$ with (2,6-dimethoxyphenyl)diphenylphosphine (MDMPP) gave $Cp*RhCl_2(MDMPP-P)$ **2** and Cp*RhCl(MDMPP-P,O) **5**, depending on the reaction conditions. Treatment of **2** with NaPF₆ formed the O-coordination complex, $[Cp*RhCl(MDMPP-P,OMe)](PF_6)$ **3**. Complex **3** was reconverted to **2** by treatment with $[N(CH_2Ph)Et_3]Cl$. Reactions of **3** with isocyanide, carbon monoxide or $P(OCH_2)_3CMe$ eliminated the O-coordination to give the corresponding complexes $[Cp*RhCl(MDMPP-P)(L)](PF_6)$ **4** (L = CO (**a**), 2,6-Me₂C₆H₃NC (**b**), *p*-TosCH₂NC (**c**), and $P(OCH_2)_3CMe$ (**d**). Complex **5** reacted with Lewis bases (L) in the presence of NaPF₆ to produce $[Cp*Rh(MDMPP-P,O)(L)](PF_6)$ **6** and could be also obtained from **3** and MDMPP. The CO ligand of **4a** or **6a** was labile and was replaced with isocyanide or phosphine to produce the corresponding complexes, whereas its reverse reaction did not occur. Conversion of **4d** to **6d** was also observed, but conversion from **4** to **6** did not occur in other complexes. X-ray analyses of **2**, **4a**, **5** and **6a** $\cdot C_6H_6$ were performed and showed that the complexes have the piano-stool structure; **2**: triclinic, P1 (no. 2), a = 10.639(3), b = 15.965(3), c = 8.800(3) Å, $\alpha = 94.43(2)$, $\beta = 103.75(3)$, $\gamma = 88.62(2)^\circ$, V = 1447.4(7) Å³, Z = 2, R = 0.039, $R_w = 0.042$; **4c** (L = p-TosCH₂NC): orthorhombic, *Pna2*₁ (no. 33), a = 26.817(4), b = 17.662(5), c = 8.673(4) Å, V = 4108(1) Å³, Z = 4, R = 0.040, $R_w = 0.042$; **5**: orthorhombic, *Pbca* (no. 61), a = 8.212(8), b = 17.808(10), c = 35.96(1) Å, V = 5259(4) Å³, Z = 8, R = 0.040, $R_w = 0.042$; **6a** $\cdot C_6H_6$ (L = CO): monoclinic, C2/c (no. 15), a = 33.29(2), b = 8.567(5), c = 29.26(3) Å, $\beta = 124.51(3)^\circ$, V = 6877(7) Å³, Z = 8, R = 0.040, $R_w = 0.042$. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: (2,6-Dimethoxyphenyl)diphenylphosphine; Bis[dichloro(pentamethylcyclopentadienyl) rhodium(II); Crystal structures; P-O chelating ligand

1. Introduction

The introduction of ether-phosphine species, instead of classical phosphines, plays an important role as an anchor to prepare intramolecular solvent complexes which are much more stable than simple solvent molecules [1]. A weak metal-oxygen bond provides as a condition of valuable precursors in catalytically-operating process. Aromatic phosphines containing the alkoxy groups at the 2- and 6-positions are one of the categories in the ether-phosphine species. Tris(2,4,6-trimethoxyphenyl)phosphine (TMPP) has produced the complexes containing a variety of coordination modes such as $(\eta^{1}-P)$, $(\eta^{2}-P,OMe)$, $(\eta^{2}-P,O)$, and $(\eta^{3}-P,O,OMe)$ [2], because of its high basicity and large cone angle [3]. Tris(2,6-dimethoxyphenyl)phosphine (TDMPP) and its related phosphines such as bis(2,6-dimethoxyphenyl)phenylphosphine (BDMPP) and (2,6-dimethoxyphenyl)diphenylphosphine (MDMPP) also showed interesting chemical behavior. Recently we have

^{*} Corresponding author. Fax: +81 474 751855.

⁰⁰²²⁻³²⁸X/98/\$19.00 $\ensuremath{\mathbb{C}}$ 1998 Elsevier Science S.A. All rights reserved. PII S0022-328X(98)00523-3

carried out the systematic reactions of bis[dichloro(η^{6} arene)ruthenium(II)] with these phosphines (TDMPP, BDMPP, and MDMPP) [4]. We reported that the reaction with TDMPP gave the complexes (η^{6} arene) $Ru[P(2-O-6-MeOC_6H_3)_2(2,6-(MeO)_2C_6H_3)]$ having new type of trihapto-(P,O,O) coordination and that the reaction with BDMPP or MDMPP formed the dihapto-(P,O)complex. $(\eta^{6}-\text{arene})\text{RuCl}[P(2-O-6 MeOC_6H_3$)(2,6-(MeO)₂C₆H₃)Ph] and the monohapto-(P)one, $(\eta^{6}-\text{arene})\text{RuCl}_{2}[\text{PPh}_{2}(2,6-(\text{MeO})_{2}\text{C}_{6}\text{H}_{3})],$ respectively. Complexes prepared in these reactions have been obtained as a result of the direct formation.

Our research was extended to bis[dichloro(η^{5} -pentamethylcyclopentadienyl)rhodium(III)] [Cp*RhCl₂]₂ **1**, which has an isoelectronic structure. In the reactions of **1** with MDMPP, we could isolate the (η^{1} -P), (η^{2} -P,OMe) and (η^{2} -P,O) coordinated complexes of (η^{5} pentamethylcyclopentadienyl)rhodium(III). We found that the stepwise conversion from the (η^{1} -P) to the phosphino-phenoxido complexes occurred and these complexes showed versatile reactivities to Lewis bases. Here we wish to report the preparations and reactions of monohapto-(η^{1} -P) and dihapto-(P,OMe) and (P,O) chelated complexes derived from a MDMPP ligand.

2. Experimental

All reactions were carried out under nitrogen atmosphere. Complex 1 [5], MDMPP [3], P(OCH₂)₃CMe [6], and xylyl isocyanide [7] were prepared according to the literature. *p*-TosCH₂NC (*p*-Tos = *p*-MeC₆H₄SO₂) and (*p*-tolyl)₃P (*p*-tolyl = *p*-MeC₆H₄) were available commercially. Toluene, CH₂Cl₂ and other solvents were distilled over CaH₂. The IR and electronic absorption spectra were measured on FT/IR-5300 and U-best 30 spectrometers, respectively. NMR spectroscopy was carried out on a Bruker AC250. ¹H-NMR spectra were measured at 250 MHz using tetramethylsilane as an internal reference and ³¹P{¹H}-NMR spectra were measured at 100 MHz using 85% H₃PO₄ as an external reference.

2.1. Reaction of 1 with MDMPP

To a solution of **1** (82.8 mg, 0.134 mmol) in CH₂Cl₂ (15 ml) was added MDMPP (108.2 mg, 0.334 mmol) at room temperature (r.t.). After the mixture was stirred for 2 h, the solvent was removed to ca. 3 ml under reduced pressure and hexane was added to the solution to give dark red crystals of [Cp*RhCl₂(MDMPP-*P*)] **2** (150.4 mg, 89%). IR (nujol): 1575 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} 404 (log ε 3.94), 278 (log ε 4.46) nm. ¹H-NMR (CDCl₃): δ 1.15 (d, J_{PH} = 3.5 Hz, C₅Me₅), 3.28 (s, OMe), 6.4–7.7 (m, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 23.6 (d, J_{RhP} = 150.9 Hz) ppm. Anal. Calc.

for $C_{30}H_{34}O_2Cl_2PRh$: C, 57.07; H, 5.43. Found: C, 56.65; H, 5.12%.

2.2. Reaction of 2 with NaPF₆

To a solution of **2** (125 mg, 0.198 mmol) in CH₂Cl₂ (10 ml)/acetone (5 ml) was added NaPF₆ (60 mg, 0.357 mmol) at r.t. After 4 h, the solvent was removed and the residue was extracted with CH₂Cl₂. The solvent was removed to ca. 3 ml and hexane was added to give red crystals of [Cp*RhCl(MDMPP-*P*,*O*Me)](PF₆) **3** (132 mg, 86%). IR (nujol): 1585, 1537, 835 (PF₆) cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} 365, 285 nm. ¹H-NMR (CDCl₃): δ 1.50 (d, $J_{PH} = 3.0$ Hz, C_5Me_5), 3.88 (s, OMe), 6.7–7.7 (m, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 37.8 (d, $J_{RhP} = 146.5$ Hz), -143.9 (sep, $J_{PF} = 708.8$ Hz) ppm. Anal. Calc. for $C_{30}H_{34}O_2$ ClF₆P₂Rh: C, 48.63; H, 4.63. Found: C, 48.62; H, 4.32%.

This complex was also prepared from the stoichiometric reaction of 1 with MDMPP in the presence of NaPF₆.

2.3. Reaction of 3 with $[(PhCH_2)Et_3N]Cl$

A solution of **3** (16 mg, 0.022 mmol) and benzyltriethylammonium chloride (4.6 mg, 0.025 mmol) in CH_2Cl_2 (10 ml) was stirred at r.t. for 3 h. The precipitate was filtered off and the solvent was removed to ca. 3 ml from the filtrate and ether was added to give **2** (6.42 mg, 78%).

2.4. Reaction of 3 with CO

Carbon monoxide was bubbled for 3 min through a solution of **3** (61.5 mg, 0.083 mmol) in CH₂Cl₂ (10 ml) at r.t. After the mixture had been stirred for 2 h, the solvent was removed under reduced pressure, and the residue was recrystallized from CH₂Cl₂ and hexane to give orange crystals (44.3 mg, 86%) of [Cp*RhCl(MDMPP-P)(CO)](PF₆)·0.5CH₂Cl₂ **4a** · 0.5CH₂Cl₂. IR (nujol): 2071 (C=O), 1583, 835 (PF₆) cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} 366, 286 nm. ¹H-NMR (CDCl₃): δ 1.50 (d, J_{PH} = 3.0 Hz, C₅Me₅), 3.88 (s, OMe), 5.27 (s, CH₂Cl₂), 6.7–7.7 (m, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 20.2 (d, J_{RhP} = 121.8 Hz), -144.0 (sep, J_{PF} = 708.8 Hz) ppm. Anal. Calc. for C_{31.5}H₃₅O₃ClF₆P₂Ru: C, 48.76; H, 4.55. Found: C, 48.85; H, 4.39%.

2.5. Reaction of 3 with xylyl isocyanide

Xylyl isocyanide (18.2 mg, 0.138 mmol) was added to a solution of **3** (54.3 mg, 0.086 mmol) in CH_2Cl_2 (10 ml) at r.t. After the mixture had been stirred for 2 h, the solvent was removed to ca. 3 ml in vacuo and diethyl ether was added to give orange crystals (75.4 mg, 98%) of [Cp*RhCl(MDMPP-*P*)(XylNC)](PF₆) **4b**. UV–vis (CH₂Cl₂): λ_{max} 340 nm. IR (nujol): 2168 (N=C), 1581, 839 (PF₆) cm⁻¹. ¹H-NMR (CDCl₃): δ 1.69 (d, $J_{PH} = 3.75$ Hz, C_5Me_5), 2.11 (s, *o*-*Me*), 3.37 (s, O*Me*), 6.7–7.8 (c, *Ph*) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 21.7 (d, $J_{RhP} = 130.5$ Hz), -144.0 (sep, $J_{PF} = 708.8$ Hz) ppm. Anal. Calc. for $C_{39}H_{43}O_2NF_6ClP_2Rh$: C, 53.71; H, 4.94; N, 1.61. Found: C, 53.72; H, 4.95; N, 1.64%.

Complex **4c** (20.5 mg, 65%) was prepared from the reaction of **3** (25.3 mg, 0.034 mmol) with *p*-TosCH₂NC (9.4 mg, 0.045 mmol). UV–vis (CH₂Cl₂): λ_{max} 337 nm. IR (nujol): 2214 (NaC), 1581, 850 (PF₆) cm⁻¹. ¹H-NMR (CDCl₃): δ 1.63 (d, J_{PH} = 3.75 Hz, C_5Me_5), 2.51 (s, *p*-*Me*), 3.33 (s, O*Me*), 4.68 (a center value of a AB type, J_{AB} = 13.9 Hz, v_{AB} = 4.7 Hz), 6.6–8.1 (c, *Ph*) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 22.0 (d, J_{RhP} = 126.9 Hz), –144.0 (sep, J_{PF} = 708.8 Hz) ppm. Anal. Calc. for $C_{39}H_{43}O_4$ NSClF₆P₂Rh: C, 50.04; H, 4.63; N, 1.49. Found: C, 49.98; H, 4.58; N, 1.37%.

Complex **4d** $\cdot 0.75$ CH₂Cl₂ (24.9 mg, 73%) was prepared from the reaction of **3** (28 mg, 0.038 mmol) with P(OCH₂)₃CMe (10.7 mg, 0.079 mmol). UV–vis (CH₂Cl₂): λ_{max} 339, 233 nm. IR (nujol): 2110 (N=C), 1583, 837 (PF₆) cm⁻¹. ¹H-NMR (CDCl₃): δ 0.75 (s, CMe), 1.55 (dd, $J_{PH} = 3.5$ Hz, $J_{PH} = 6.0$ Hz C₅Me₅), 3.34 (s, *o*-Me), 4.15 (c, OCH₂), 5.27 (s, CH₂Cl₂), 6.6–7.6 (m, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 19.02 (dd, $J_{RhP} = 135.7$ Hz, $J_{PP} = 89.0$ Hz), 114.0 (dd, $J_{RhP} = 223.5$ Hz, $J_{PP} = 89.0$ Hz) ppm. Anal. Calc. for C_{34.75}H_{44.5}O₅Cl_{2.5}F₆P₃Rh: C, 44.37; H, 4.77. Found: C,44.76;H, 4.55%.

2.6. Reaction of 3 with MDMPP

A solution of **3** (10.8 mg, 0.015 mmol) and MDMPP (7.1 mg, 0.021 mmol) in CH₂Cl₂ (15 ml) was stirred at r.t. After 2 h, the solvent was removed to dryness and the residue was crystallized from CH₂Cl₂/hexane to yield reddish orange crystals of Cp*RhCl(MDMPP-*P*,*O*) **5** (7.1 mg, 84%). IR (nujol): 1585, 1537 cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} 331, 400(sh) nm. ¹H-NMR (CDCl₃): δ 1.48 (d, $J_{PH} = 3.0$ Hz, C_5Me_5), 3.34 (s, OMe), 5.8–7.9 (m, *Ph*) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 50.4 (d, $J_{RhP} = 139.6$ Hz) ppm. Anal. Calc. for C₂₉H₃₁O₂ClPRh: C, 59.95; H, 5.38. Found: C 59.65; H, 5.15%.

Complex 3 (26.2 mg, 0.041 mmol) in EtOH (10 ml) was heated for 3 h in a sealed tube, and the solvent was removed to dryness and the residue was crystallized from CH_2Cl_2 /hexane to yield 5 (11 mg, 42%).

2.7. Heating of 4a in CH_2Cl_2

A solution of **4a** (30 mg, 0.041 mmol) in CH_2Cl_2 (10 ml) was refluxed for 2 h. The work-up of the mixture and recrystallization from CH_2Cl_2 and diethyl ether gave **3** (24.5 mg, 81%).

2.8. Reactions of **4a** with xylyl isocyanide or $P(OCH_2)_3CMe$

A CH_2Cl_2 solution of **4a** and xylyl isocyanide or $P(OCH_2)3CMe$ was stirred for 2 h at r.t. The work-up of the mixture gave the corresponding **4b** or **4d**.

2.9. Reaction of 5 with CO

Carbon monoxide was bubbled through a mixture of 5 (171.7 mg, 0.237 mmol) and excess $NaPF_6$ in CH_2Cl_2 (10 ml) and acetone (5 ml) for 3 min at r.t. and the mixture was kept stirring for 2 h. The solvent was removed in vacuo, the residue was extracted with CH_2Cl_2 . The solvent was removed to ca. 3 ml and diethyl ether was added to yield red crystals of $[Cp*Rh(MDMPP-P,O)(CO)](PF_6) \cdot 0.75CH_2Cl_2$ $6a \cdot 0.75 CH_2 Cl_2$ (131.2 mg, 78%). λ_{max} 366, 286. IR (nujol): 2089 (C=O), 1583, 1545, 839 (PF₆) cm⁻¹. ¹H-NMR (CDCl₃): δ 1.68 (d, $J_{PH} = 4.0$ Hz, $C_5 M e_5$), 3.39 (s, MeO), 6.7–7.9 (m, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 46.8 (d, $J_{RhP} = 111.9$ Hz), -140.0 (sep PF_6 , $J_{\rm PF} = 708.8$ Hz) Anal. Calc. ppm. for C_{30.75}H_{32.5}O₃Cl_{1.5}F₆P₂Rh: C, 47.22; H, 4.15. Found: C, 47.83; H, 3.91%.

2.10. Reaction of 5 with $P(OCH_2)_3CMe$

A sample of P(OCH₂)₃CMe (11 mg, 0.081 mmol) was added to a solution of 5 (25 mg, 0.046 mmol) and an excess of NaPF₆ in CH₂Cl₂ (10 ml) and acetone (5 ml) at r.t. After 2 h, the solvent was removed to dryness and the residue was extracted with CH₂Cl₂. The solvent was removed to ca. 3 ml and diethyl ether was added to yield orange crystals of [Cp*Rh(MDMPP-P,O {P(OCH₂)₃CMe}](PF₆) 6d (18.7 mg, 51%). UVvis (CH₂Cl₂): λ_{max} 309 nm. IR (nujol): 1583, 1548, 839 (PF₆) cm⁻¹. ¹H-NMR (CDCl₃): δ 0.60 (s, CMe), 1.53 (dd, $J_{\rm PH} = 3.0$ Hz, $J_{\rm PH} = 5.0$ Hz, $C_5 M e_5$), 3.32 (s, *MeO*), 3.82 (m, *CH*₂), 6.0–7.6 (m, *Ph*). ${}^{31}P{}^{1}H$ -NMR (CDCl₃): δ 47.4 (dd, $J_{RhP} = 121.5$ Hz, $J_{PP} = 85.0$ Hz, MDMPP-*P*), 115.4 [dd, $J_{RhP} = 230.7$ Hz, $J_{PP} = 85.0$ Hz, $(p-tol)_3$ P], -143.8 (sep PF₆, $J_{PF} = 708.8$ Hz). Anal. Calc. for C₃₃H₄₀O₅F₆P₃Rh: C, 47.96; H, 4.88. Found: C, 47.70; H, 4.62%.

According to analogous procedures orange crystals of **6e** (37 mg, 86%) were prepared from **5** (25 mg, 0.046 mol) and tris(*p*-tolyl)phosphine (13.9 mg, 0.046 mmol) in the presence of excess NaPF₆. IR (nujol): 1583, 1548, 839 (PF₆) cm⁻¹. UV-vis (CH₂Cl₂): λ_{max} 333 nm. ¹H-NMR (CDCl₃): δ 1.19 (t, $J_{PH} = J_{P'H} = 3.3$ Hz, C_5Me_5), 2.40 (bs, *p*-*Me*), 3.11 (s, OMe), 5.8–7.6 (c, *Ph*) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 22.9 (dd, $J_{RhP} = 142.1$ Hz, $J_{PP} = 41.0$ Hz, MDMPP-*P*), 51.1 [dd, $J_{RhP} = 133.7$ Hz, $J_{PP} = 41.0$ Hz, (*p*-tolyl)₃P], -143.8 (sep PF₆, $J_{PF} = 708.8$ Hz) ppm. Anal. Calc. for $C_{50}H_{52}O_2F_6P_3$ Rh: C, 60.37; H, 5.27. Found: C, 60.09; H, 5.00%.

Table 1

Crystal data for $(\eta^5-C_5Me_5)RhCl_2(MDMPP-P)$ **2**, $[(\eta^5-C_5Me_5)RhCl(MDMPP-P)(p-TosCH_2NC)](PF_6)$ **4c**, $(\eta^5-C_5Me_5)RhCl(MDMPP-P,O)$ **5** and $(\eta^{5}-C_{5}Me_{5})Rh(MDMPP-P,O)(CO)](PF_{6}) \cdot C_{6}H_{6}$ 6a $\cdot C_{6}H_{6}$.

Compound	2	4c	5	$\mathbf{6a} \cdot \mathbf{C}_{6} \mathbf{H}_{6}$
Formula	C ₃₀ H ₃₄ O ₂ PCl ₂ Rh	C ₃₉ H ₄₃ NO ₄ ClSP ₂ F ₆ Rh	C ₂₉ H ₃₁ O ₂ PClRh	C ₃₆ H ₃₇ O ₃ P ₂ F ₆ Rh
$M_{ m W}$	631.38	936.13	580.90	896.53
Color	Brown	Orange	Orange	Orange
Crystal dimensions (mm)	$0.50 \times 0.25 \times 0.20$	$0.50 \times 0.30 \times 0.20$	$0.2 \times 0.1 \times 0.4$	$0.05 \times 0.05 \times 0.20$
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	P1 (no. 2)	<i>Pna</i> 2 ₁ (no. 33)	Pbca (no. 61)	C2/c (no. 15)
Lattice parameters				
a	10.639(3)	26.817(4)	8.212(8)	33.29(2)
b	15.965(3)	17.662(5)	17.808(10)	8.567(5)
С	8.800(3)	8.673(4)	35.96(1)	29.26(3)
α	94.43(2)	90.0	90.0	90.0
β	103.75(3)	90.0	90.0	124.51(3)
Ŷ	88.62(2)	90.0	90.0	90.0
$V(Å^3)$	1447.4(7)	4108(1)	5259(4)	6877(7)
Z	2	4	8	8
D_{calc} (g cm ⁻³)	1.449	1.513	1.467	1.538
F(000)	648	1912	2384	3243
$\mu (cm^{-1})$	8.53	6.76	8.34	6.56
Scan rate (° min^{-1})	16	8	4	2
No. of reflections ($\theta < 50^{\circ}$)	7013	4109	7245	5143
No. of unique data	4424 $[I > 3.0\sigma(I)]$	2061 $[I > 2.0\sigma(I)]$	2673 $(I > 3.0\sigma(I)]$	1531 $(I > 2.0\sigma(I)]$
No. of variables	325	466	307	368
R, R_{w}^{a}	0.039, 0.042	0.052, 0.052	0.047, 0.048	0.072, 0.073
GOF ^b	1.25	1.24	1.22	1.30

^a $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $R_w = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{1/2}$ $[w = 1/\sigma^2 (F_o)]$. ^b GOF = $[\Sigma w (|F_o| - |F_c|)^2 / (N_{obs} - N_{parm})]^{1/2}$.

Complex 6b (42.6 mg, 55%) was obtained from 5 (54.3 mg, 0.093 mol) and xylyl isocyanide (18.4 mg, 0.139 mmol) in the presence of excess NaPF₆. IR (nujol): 2183 (N=C), 1583, 1545, 839 (PF₆) cm⁻¹. 1 H-NMR (CDCl₃): δ 1.68 (d, $J_{PH} = 3.3$ Hz, $C_5 M e_5$), 1.84 (s, o-Me), 3.35 (s, OMe), 6.0-7.6 (c, Ph) ppm. ³¹P{¹H}-NMR (CDCl₃): δ 47.8 (d, $J_{RhP} = 116.0$ Hz). Anal. Calc. for C₃₅H₄₀O₂NF₆P₂Rh: C, 55.55; H, 4.91; N, 1.70. Found: C, 55.65; H, 4.97; N, 1.64%. This complex 6b was also obtained from the reaction of 6a with xylyl isocyanide at r.t.

2.11. Heating of 4d in EtOH

A solution of 4d (9.5 mg, 0.011 mmol) in EtOH (10 ml) was refluxed for 4 h. The solvent was removed and the residue was crystallized from CH₂Cl₂ and diethyl ether to give 6d (6.8 mg, 75%).

2.12. Data collection

Complexes 2, 4c and 5 were recrystallized from CH₂Cl₂/hexane or CH₂Cl₂/ether. Complex 6a was recrystallized from CH₂Cl₂/benzene and contained a benzene molecule as a solvated molecule. Cell constants were determined from 25 reflections on Rigaku four-circle automated diffractometer AFC5S. The crystal

parameters along with data collections are summarized in Table 1. Data collection was carried out by a Rigaku AFC5S refractometer at 25°C. Intensities were measured by the $2\theta - \omega$ scan method using Mo-K_a radiation ($\lambda = 0.71069$ Å). Throughout the data collection the intensities of the three standard reflections were measured every 200 reflections as a check of the stability of the crystals and any decay was not observed. Intensities were corrected for Lorentz and polarization effects. The absorption correction was made. Atomic scattering factors were taken from Cromer and Waber [8]. Anomalous dispersion effects were included in $F_{\text{calc.}}$ [9]; the values of $\Delta f'$ and $\Delta f''$ were from Creagh and McAuley [10]. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation (1985 and 1992).

2.13. Determination of the structures

The structures of 2 and 5 were solved by direct methods (SIR92) and 4c and $6a \cdot C_6H_6$ were solved by Patterson methods (DIRDIF92 PATTY). The rhodium atom was located in the initial E map, and subsequent Fourier syntheses gave the positions of other non-H atoms. Hydrogen atoms were calculated at the ideal positions with the C-H distance of 0.95 Å, and were not refined. The positions of the non-H atoms of 2, 4c

Scheme 1. Reactions of $[Cp*RhCl_2(MDMPP-P) 2$ and its related complexes. (i) NaPF₆. (ii) $[N(PhCH_2)Et_3]Cl.$ (iii) L = 4a: CO, 4b: XylNC, 4c: *p*-TosCH₂NC, 4d: P(OCH₂)₃CMe. (iv) L = CO, refluxed in CH₂Cl₂. (v) Refluxed in in EtOH. (vi) MDMPP, r.t. in CH₂Cl₂. (vii) L = 6a: CO, 6b: XylNC, 6d: P(OCH₂)₃CMe, 6e: P(*p*-Tolyl)₃. (viii) 4d, refluxed in EtOH.

and **5** were refined with anisotropic thermal parameters by using full-matrix least-squares methods. The F atoms for **4c** and the C1, C6, and F atoms and a solvated benzene atoms (C31–C36) for **6c** \cdot C₆H₆ were refined isotropically and other non-H atoms were refined anisotropically by using full-matrix least-squares methods. Final difference Fourier syntheses showed peaks at heights up to 0.41–0.61 e Å⁻³.

Fig. 2. Crystal structure of $[Cp*RhCl(MDMPP-P)(p-TosCH_2-NC)](PF_6)$ 4c. PF₆ is omitted for clarity.

3. Results and discussion

Overall reactions described here are depicted in Scheme 1. Treatment of 1 with MDMPP at r.t. gave dark red crystals 2 in a 89% yield, formulated as $Cp*RhCl_{2}[PPh_{2}{2,6-(MeO)_{2}C_{6}H_{3}}]$. In the ¹H-NMR spectrum the methyl protons showed a doublet at δ 1.15 ppm $(J_{\rm PH} = 3.5 \text{ Hz})$ which was derived from a coupling with a P atom because the methyl protons on the Cp* ring of the starting complex 1 appeared as a singlet. The methoxy protons appeared at δ 3.28 ppm as a singlet. The ³¹P{¹H}-NMR spectrum showed a doublet at δ 23.5 ppm ($J_{\rm RhP} = 150.9$ Hz). The IR spectrum showed only one band (1575 cm^{-1}) in the range from 1500 to 1600 cm⁻¹, suggesting the presence of the η^{1} -P coordination [4]. It was confirmed by an X-ray analysis that the structure consists of a pianostool in which the rhodium atom is surrounded by a phosphorus, two chloride atoms and Cp* ring (Fig. 1). The salient feature of this complex is that the in-

Fig. 1. Crystal structure of [Cp*RhCl₂(MDMPP-P)] 2.

Fig. 3. Crystal structure of [Cp*RhCl(MDMPP-P,O)] 5.

tramolecular Cl1…O1 distance is 3.247 Å and the close interaction between the methoxy group and Cl atom is expected.

When complex 2 was treated with $NaPF_6$ in an acetone/CH₂Cl₂ solution at r.t., an elimination of a Cl atom occurred readily to form the salt-like O-coordinated complex 3, [Cp*RhCl(MDMPP-P,OMe)][PF₆]. The IR spectrum showed two bands at 1585 and 1537 cm^{-1} in the range from 1500 to 1600 cm^{-1} , indicative of the presence of the P–O chelation [4]. The PF_6 group was found by a strong band at 835 cm^{-1} . In the ¹H-NMR spectrum the methoxy protons appeared at δ 3.88 ppm as a broad singlet at ambient temperature, indicating a rapid exchange between free and coordinated MeO groups. The temperature-dependent NMR spectra were measured. Two sharp singlets were observed at δ 3.34 and 4.43 ppm below ca. -20° C, assignable to free and coordinated methoxy groups, respectively. Two singlets became broader with the rise of temperature and the chemical shift difference became narrower. The two broad signals coalesced at ca. -10°C, showing a rapid exchange between two methyl groups. A coalesced signal became sharper with further rise of temperature and a sharp singlet appeared at δ 3.86 ppm at 50°C. The activation energy for this intramolecular process could be evaluated using the Eyring equation as ca. 35 kJ mol⁻¹. For RhCl₂(P- $O(P-O)_2$ [11], RhCl(P-O(P-O) [12] and RhCl₃(P-O(P-O) [13] $[P-O = R_2PCH_2CH_2OMe (R = C_6H_{11} \text{ or})$ Ph), Ph₂PCH₂CH₂C(O)OEt] the values were 50-75 kJ mol^{-1} , thus indicating a weaker bonding for 3.

This weak interaction was revealed by the fact that addition of excess NEt₃(CH₂Ph)Cl to 3 regenerated 2. This labile O-coordination also led to the easy replacement with Lewis bases such as CO, XyINC (XyI = 2,6- $Me_2C_6H_3$), p-TosCH₂NC or P(OCH₂)₃CMe. When CO was bubbled into a CH₂Cl₂ solution of 3 at r.t., com-4a. formulated as [Cp*RhCl(MDMPPpound P)(CO)][PF₆], was formed by an elimination of an O-coordinated methoxy group and the subsequent coordination of an incoming CO molecule. The similar complexes 4 (b: L = XyINC; c = p-TosCH₂NC; d: L =P(OCH₂)₃CMe) were isolated from 3 and the corresponding Lewis bases. However the reaction with tris(*p*-tolyl)phosphine recovered the starting material, due to steric hindrance from the greater cone angle (145°) of *p*-tolyl groups than that (101°) of P(OCH₂)₃CMe [14].

The absence of the P–O chelation was confirmed by observation of only one band in the range 1500-1600 cm⁻¹ in the IR spectrum of each complex. The characteristic bands of these complexes (**4a–c**) appeared at 2071 cm⁻¹ for **4a**, 2168 cm⁻¹ for **4b** and 2214 cm⁻¹ for **4c**; the former is assigned to a CO group and the others to an NC group.

Fig. 4. Crystal structure of $[Cp*Rh(MDMPP-P,O)(CO)](PF_6) \cdot C_6H_6$ **6a** $\cdot C_6H_6$. PF₆ is omitted for clarity.

In the ¹H-NMR spectrum of **4c** the methylene protons showed an AB quartet centered at δ 4.68 ppm arising from chemical inequivalence caused by the presence of the chiral center. The ${}^{31}P{}^{1}H$ -NMR spectrum showed a doublet at δ 22.0 ($J_{RhP} = 126.9$ Hz) ppm for the phosphine ligand. In the ¹H-NMR spectrum of 4d, the Cp* protons appeared as a double doublet, with separations of 3.5 and 6.0 Hz, the larger separation being associated with the entering P(OCH₂)₃CMe ligand. The methoxy and methylene protons appeared at δ 3.34 and 4.15 ppm as a singlet and complex band, respectively. In the ${}^{31}P{}^{1}H$ -NMR spectrum two double doublets appeared at δ 19.0 ($J_{\rm RhP} = 135.8$ Hz, $J_{\rm PP} =$ 89.0 Hz) and 114.0 $(J_{RhP} = 223.5 \text{ Hz}, J_{PP} = 89.0 \text{ Hz})$ ppm; the former is assignable to the MDMPP and the latter to P(OCH₂)₃CMe. The X-ray analysis of 4c was carried out as the representative compound in order to determine the detailed structures of 4, and the structure is a typical piano-stool one (Fig. 2). Reactions with small molecules also have been reported in $Cp*Ru(P-O)(P^{O})[BPh_4]$ complex $(P - O = \eta^{1} Ph_2PCH_2CH_2OMe$, $P^OO = \eta^2 - Ph_2PCH_2CH_2OMe$) [15].

The CO ligand was very labile. When 4a was refluxed in Ch₂Cl₂, the CO ligand was eliminated to regenerate **3**, whereas heating of **4b** in EtOH recovered the starting material quantitatively, suggesting the stability of a metal-isocyanide bond.

$$3 \xrightarrow[]{CO} 4$$

The coordinated CO ligand could be replaced readily with other Lewis bases. When **4a** was treated with isocyanides or $P(OCH_2)_3CMe$ in CH_2Cl_2 at r.t., the corresponding complex **4b**, **4c**, or **4d** was obtained, whereas its reverse reaction and an interconversion between **4b** and **4d** did not proceed. The difference in the ligand substitution reactions is due to the fact that

Selected bond length	sected bond lengths (A) and angles (1) for 2										
Bond lengths (Å)											
Rh-Cl1	2.392(1)	Rh-C12	2.411(1)	Rh-P	2.366(1)						
O1-C12	1.357(5)	O1-C17	1.409(6)	O2-C16	1.347(6)						
O2-C18	1.405(6)	Rh-Cp*(av)	2.190								
Cl1…O1	3.226(3)										
Bond angles (°)											
Cl1-Rh-C12	89.00(4)	Cl1-Rh-P	93.05(4)	Cl2-Rh-P	90.02(4)						

Table 2 Selected bond lengths (Å) and angles (°) for 2

the rhodium atom in the high oxidation state prefers isocyanide or phosphine ligands with their strong σ donor ability to the CO ligand.

When 3 was treated with MDMPP in CH₂Cl₂at r.t., the phosphonium salt MDMPP·MeCl and a neutral complex reddish-orange phenoxido n^5 -5 Cp*RhCl(MDMPP-P,O) were formed. Complex 5 could be prepared also by refuxing 2 in EtOH or directly by refluxing a mixture of 1 and MDMPP in EtOH. A similar elimination reaction of MeX from a MDMPP ligand has been reported from the reaction of a square-planar PtCl₂(MDMPP)₂ complex with NaI under reflux in 2-methoxyethanol [16]. The IR spectrum showed the presence of the characteristic P,O-chelation at 1585 and 1537 cm⁻¹. The ¹H-NMR spectrum showed a doublet at δ 1.48 ($J_{\rm PH}$ = 3.0 Hz) and a singlet at δ 3.34 ppm, assignable to methyl protons of the Cp* and methoxy groups, respectively. The X-ray analysis confirmed that the configuration around the Rh atom is significantly different from that of not $(\eta^{6}$ arene)RuCl(MDMPP-P,O) (Fig. 3) [4].

When a mixture of complex **5** in acetone and CH_2Cl_2 was treated under a CO atmosphere in the presence of NaPF₆ at r.t., replacement of a Cl anion occurred readily to give reddish crystals **6a** [Cp*Rh(MDMPP-*P*,*O*)(CO)](PF₆). Analogously, the reaction with XylNC or P(OCH₂)₃CMe in the presence of NaPF₆ produced the corresponding orange salt-like complex **6** (b: L = XylNC; **d** = P(OCH₂)₃CMe). Compound **6d** was also prepared by heating of **4d** in EtOH, whereas heating of **4b** recovered the starting material.

Table 3								
Selected	bond	lengths	(Å)	and	angles	(°)	for	4c

Although no reaction occurred between 3 and tris(p-tolyl)phosphine, the complex **6e** [L = (p-tolyl)₃P] could be obtained as orange crystals from the reaction of 5 with bulky tris(p-tolyl)phosphine. The presence of the coordinated MeO group in 3 prevented the reaction with *tert*-phosphine, which suggests a considerable amount of steric hindrance encountered by an entering ligand.

The IR spectrum of 6a showed a characteristic band at 2089 cm⁻¹ (due to a C=O) and that of **6b**, at 2183 cm⁻¹, due to a C≡N bond, appearing at higher frequency by ca. 15 cm⁻¹ than those of **4a** and **4b**, respectively, due to the higher electronegativity of the O atom than that of a Cl atom. The ¹H-NMR spectrum of **6d** showed two singlets at δ 0.60 and 3.32 ppm assignable to the MeC and MeO protons and a broad signal at δ 3.82 ppm due to the CH₂O groups. The Cp* protons at δ 1.53 ppm appeared as a double doublet appearing at 5.5 and 3.0 Hz, respectively; based on assignment of 4d, the former coupling constant is responsible for the P atom of P(OCH₂)₃CMe and the latter for MDMPP-O ligand, respectively. The ${}^{31}P{}^{1}H{}$ -NMR spectrum consisted of a double doublet at δ 47.4 ppm $(J_{RhP} = 121.5, J_{PP} = 85.0 \text{ Hz})$ due to MDMPP-O ligand and δ 115.4 ($J_{\rm RhP} = 230.7$, $J_{\rm PP} = 85.0$ Hz) ppm due to P(OCH₂)₃CMe ligand. An analogous NMR behavior was also observed for 6e. In the ¹H-NMR spectrum of 6e, the methyl protons of the Cp* ligand appeared at δ 1.19 ppm as a triplet, separated by $J_{\rm PH} = J_{\rm P'H} = 3.3$ Hz. The protons of *p*-methyl and methoxy groups appeared at δ 2.40 (bs) and 3.11 (s) ppm. The ³¹P{¹H}-NMR spectrum consisted of a dou-

	2 202(4)	DI D	2,252(2)	B1 (21)	1.05(1)
Rh-Cll	2.383(4)	Rh-P	2.353(3)	Rh-C31	1.95(1)
C31-N1	1.14(1)	S1-O3	1.45(1)	S1-O4	1.44(1)
O1-C12	1.36(1)	O1-C17	1.43(2)	O2-C16	1.34(1)
O2-C18	1.46(2)	Rh-Cp*(av)	2.22		
Bond angles (°)					
XCl1-Rh-P	91.9(1)	Cl1-Rh-C31	88.0(4)	P1-Rh-C31	90.1(3)
Rh-C31-N1	172.6(10)	C31-N1-C32	178(1)	N1-C32-S1	109.1(8)
O3-S1-C32	107.5(7)	O4-S1-C32	107.5(7)	O3-S1-O4	121.5(8)
C32-S1-C33	108.3(7)				

elected bond lengths (A) and angles (°) for 5								
Bond lengths (Å)								
Rh-Cl1	2.404(3)	Rh-P(1)	2.302(2)	Rh-O1	2.059(5)			
O1-Cl1	1.284(8)	O2-C15	1.393(9)	O2-C17	1.39(1)			
Rh-Cp*(av)	2.177							
Bond angles (°)								
Cl1-Rh-P	86.56(8)	Cl1-Rh-O1	86.6(2)	P-Rh-O1	82.3(1)			
Rh-O1-Cl1	121.6(5)	O1-C11-C16	116.4(7)	P-Cl1-C16	113.7(6)			

Table 4 Selected bond lengths (Å) and angles (°) for 5

ble doublet at δ 22.9 ($J_{\rm RhP}$ = 142.1, $J_{\rm PP}$ = 41.0 Hz) due to tris(*p*-tolyl)phosphine and 51.1 ($J_{\rm RhP}$ = 133.7, $J_{\rm PP}$ = 41.0 Hz) ppm due to the MDMPP-*O* ligand. The structure of this type of complexes was determined by an X-ray analysis of **6a** (Fig. 4).

The CO ligand of **6a** could be eliminated readily, as well as that of **4a**. When **6a** was treated with xylyl isocyanide or $P(OCH_2)_3CMe$ in CH_2Cl_2 at r.t., the corresponding complex **6b** or **6d** was isolated in high yield, respectively, but the reverse reactions did not occur. An interconversion between **6b** and **6d** also did not proceed.

3.1. Molecular structures

The molecular structures of 2, 4c, 5, and $6a \cdot C_6H_6$ are depicted in Figs. 1–4. The selected bond lengths and angles are shown in Tables 2–5. All complexes have piano-stool structures. Average bond angles (A–Rh–B) among three ligands except the Cp* ring are ca. 90° for 2 and 4c, but ca. 86° for 5 and $6a \cdot C_6H_6$. The bond angles of the complexes bearing the P–O chelation are narrower than those of non-chelated complexes. Such difference was also observed in the Rh–P bond lengths; non-chelated complexes 5 and $6a \cdot C_6H_6$, minimizing the steric influence of *tert*-phosphine. The Rh–O bond lengths in 5 and $6a \cdot C_6H_6$ are 2.059(5) and 2.08(1) Å, respectively, being not different significantly.

The salient feature in 2 is an intramolecular interaction of 3.226(3) Å between Cl1 and O1 atoms, being close to a sum (3.20 Å) of the van der Waals' radii of the two atoms. This value suggested the presence of

Table 5 Selected bond lengths (Å) and angles (°) for ${\bf 6a} \cdot C_6 H_6$

some interaction between a Cl atom and a methyl group, which is likely a driving force of an elimination of MeCl. The Rh–C31 (isocyanide) length of 1.939(10) Å in **4c** is not significantly different from the Rh–C30 (carbon monoxide) one of 1.96(2) Å. The C=O and C=N bond lengths fall in the range of the usual triple bond distances. The Rh–C31–N1 and C31–N1–C32 bond angles in **4c** are 172.6(10) and 177(1)°, respectively. These values are not unusual. The Rh–C30–O3 angle in **6a** \cdot C₆H₆ is bent and measures 164(1)°.

4. Conclusion

Complexes 2, 3 and 5 showed versatile reactivities for Lewis bases such as CO, isocyanide and phosphines. Some of the complexes are interconvertible and the route from 2 to 6 proceeded stepwise. These complexes can act as starting materials for chemistry of the rhodium complexes bearing the P–O coordination. The diversity of chemical reaction is expected for other small molecules, such as acetylenes and olefins and studies of these such molecules are currently in progress.

5. Supplementary material

Tables of positional coordinates, anisotropic parameters, bond lengths, and angles, and a listing of observed and calculated structure factors are available from Y. Yamamoto on request.

Bond length (Å)						
Rh-P	2.334(5)	Rh-O1	2.08(1)	Rh-C30	1.96(2)	
O1-C12	1.35(2)	O2-C16	1.38(2)	O2-C17	1.43(2)	
O3-C30	1.04(2)	Rh-Cp*(av)	2.208			
Bond angle (°)						
P1-Rh-O1	82.1(4)	P1-Rh-C30	87.8(6)	O1-Rh-C30	86.8(6)	
Rh-C30-O3	164(1)	Rh-P1-Cl1	99.7(6)	Rh-O1-C12	118(1)	

Acknowledgements

The authors would like to thank Professor Sigetoshi Takahashi and Fumie Takei in Osaka University for measurement of FAB mass spectroscopy.

References

- [1] A. Bader, E. Lindner, Coord. Chem. Rev. 108 (1991) 27.
- [2] (a) S.C. Haefner, K.R. Dunbar, C. Bender, J. Am. Chem. Soc. 13 (1991) 9540 and therein. (b) S.C. Haefner, K. Dunbar, Organometallics 11 (1992) 1431 and therein. (c) K.R. Dunbar, J.H. Matonic, V.P. Saharan, Inorg. Chem. 33 (1994) 25. (d) L.-J. Baker, G.A. Bowmaker, D. Camp, P.C. Healy, H. Schmidbaur, O. Steigelmann, A.H. White, J. Inorg. Chem. 31 (1992) 3656. (e) L.-J. Baker, G.A. Bowmaker, B.W. Skelton, A.H. White, J. Chem. Soc. Dalton Trans. (1993) 3235. (f) K.R. Dunbar, S.C. Haefner, C.E. Uzelmeier, A. Howard, Inorg. Chim. Acta 240 (1995) 527. (g) L.-J. Baker, R.C. Bott, G.A. Bowmaker, P.C. Healy, B.W. Skelton, P. Schwerdtfeger, A.H. White, J. Chem. Soc. Dalton Trans. (1995) 1341 and therein.
- [3] (a) M. Wada, S. Higashizaki, A. Tsuboi, J. Chem. Soc. Synop. (1985) 38; J. Chem. Res. Miniprint 1985, 0467. (b) M. Wada, A. Tsuboi, J. Chem. Soc. Perkin Trans. 1 (1987) 151. (c) Y. Yamashoji, T. Matsushita, M. Wada, T. Shono, Chem. Lett. (1988) 43.
- [4] (a) Y. Yamamoto, R. Sato, M. Ohshima, F. Matsuo, J. Organomet. Chem. 489 (1995) C68. (b) Y. Yamamoto, R. Sato, F. Matsuo, C. Sudoh, T. Igoshi, Inorg. Chem. 35 (1996) 2329.

- [5] J.W. Kang, K. Moseley, M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5971.
- [6] W.S. Wadsworth, W.D. Emmons, J. Am. Chem. Soc. 84 (1962) 610.
- [7] H.M. Walborsky, G.E. Niznik, J. Org. Chem. 37 (1972) 187.
- [8] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, vol. IV, Kynoch Press, Birmingham, UK, Table 2.2A, 1974.
- [9] J.A. Ibers, W.C. Hamilton, Acta. Crystallogr. 17 (1964) 781.
- [10] D.C. Creagh, W.J. McAuley, in: A.J.C. Wilson, (Ed.), International Tables for Crystallography, vol. C, Kluwer Academic, Boston, Table 4.2.6.8, 1992, pp. 219–222.
- [11] (a) P. Braunstein, Y. Chauvin, J. Nahring, Y. Dusausoy, D. Bayeul, A. Tiripicchio, F. Ugozzoli, J. Chem. Soc. Dalton Trans. (1995) 851. (b) J.-B. Ballif, P. Braunstein, A.D. Burrows, R.D. Adams, W. Wu, J. Cluster Sci. 5 (1994) 443. (c) J. Andrieu, P. Braunstein, A.D. Burrows, J. Chem. Res. S (1993) 380. (d) P. Braunstein, D. Matt, Y. Dusausoy, Inorg. Chem. 22 (1983) 2043. (e) E. Lindner, B. Karle, Z. Natureforsch. Teil B 45 (1990) 1108.
- [12] (a) P. Braunstein, D. Matt, Y. Dusausoy, Inorg. Chem. 22 (1983) 2043. (b) P Braunstein, Y. Chauvin, J. Nhring, A. DeCian, J. Fischer, J. Chem. Soc. Dalton Trans. (1995) 863.
- [13] E. Lindner, Q. Wang, H.A. Mayer, A. Bader, H. Kühbauch, P. Wegner, Organometallics 12 (1993) 3291.
- [14] C.A. Tolman, Chem. Rev. 77 (1977) 313.
- [15] (a) E. Lindner, M. Haustein, H.A. Mayer, K. Gierling, R. Fawzi, M. Steimann, Organometallics 14 (1995) 2245. (b) E. Lindner, H.A. Mayer, R. Fawzi, M. Steimann, Organometallics 12 (1993) 1865.
- [16] E. Lindner, M. Haustein, R. Fawzi, M. Steimann, P. Wegner, Organometallics 13 (1994) 5021.